Oxidation behavior of FeV2O4 and FeCr2O4 particles in the air: Nonisothermal kinetic and reaction mechanism
Junyi Xiang, Xi Lu, Luwei Bai, Hongru Rao, Sheng Liu, Qingyun Huang, Shengqin Zhang, Guishang Pei, Xuewei Lü
Oxidation behavior of FeV2O4 and FeCr2O4 particles in the air: Nonisothermal kinetic and reaction mechanism
High-temperature oxidation behavior of ferrovanadium (FeV2O4) and ferrochrome (FeCr2O4) spinels is crucial for the application of spinel as an energy material, as well as for the clean usage of high-chromium vanadium slag. Herein, the nonisothermal oxidation behavior of FeV2O4 and FeCr2O4 prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction (XRD) at heating rates of 5, 10, and 15 K/min. The apparent activation energy was determined by the Kissinger–Akahira–Sunose (KAS) method, whereas the mechanism function was elucidated by the Malek method. Moreover, in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV2O4 and FeCr2O4. The results reveal a gradual increase in the overall apparent activation energies for FeV2O4 and FeCr2O4 during oxidation. Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound. The oxidation mechanisms of FeV2O4 and FeCr2O4 are complex and have distinct mechanisms. In particular, the chemical reaction controls the entire oxidation process for FeV2O4, whereas that for FeCr2O4 transitions from a three-dimensional diffusion model to a chemical reaction model. According to the in-situ XRD results, numerous intermediate products are observed during the oxidation process of both compounds, eventually resulting in the final products FeVO4 and V2O5 for FeV2O4 and Fe2O3 and Cr2O3 for FeCr2O4, respectively.
FeV2O4 / FeCr2O4 / oxidation / nonisothermal kinetics / mechanism
[[1]] |
|
[[2]] |
A. Sundaresan and N. Ter-Oganessian, Magnetoelectric and multiferroic properties of spinels, J. Appl. Phys., 129(2021), art. No. 060901.
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
S. Nishihara, W. Doi, H. Ishibashi, Y. Hosokoshi, X.M. Ren, and S. Mori, Appearance of magnetization jumps in magnetic hysteresis curves in spinel oxide FeV2O4, J. Appl. Phys., 107(2010), No. 9, art. No. 09A504.
|
[[8]] |
L. Yang, Y.R. Zhang, C.P. Wu, et al., A novel high-selectivity mixed potential ammonia gas sensor based on FeCr2O4 sensing electrode, J. Electroanal. Chem., 924(2022), art. No. 116849.
|
[[9]] |
|
[[10]] |
|
[[11]] |
G. Ghanashyam and H.K. Jeong, Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor, J. Energy Storage, 33(2021), art. No. 102150.
|
[[12]] |
|
[[13]] |
I.V.B. Maggay, L.M.Z. De Juan, J.S. Lu, et al., Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries, Sci. Rep., 8(2018), art. No. 8839.
|
[[14]] |
T.R. Kuo, W.T. Chen, H.J. Liao, et al., Improving hydrogen evolution activity of earth-abundant cobalt-doped iron pyrite catalysts by surface modification with phosphide, Small, 13(2017), No. 8, art. No. 1603356.
|
[[15]] |
S. Yougbare, T.K. Chang, S.H. Tan, et al., Antimicrobial gold nanoclusters: Recent developments and future perspectives, Int. J. Mol. Sci., 20(2019), No. 12, art. No. E2924.
|
[[16]] |
S. Yougbaré, H.L. Chou, C.H. Yang, et al., Face-dependent gold nanocrystals for effective photothermal killing of bacteria, J. Hazard. Mater., 407(2021), art. No. 124617.
|
[[17]] |
B. Janani, S. Swetha, A. Syed, et al., Spinel FeV2O4 coupling on nanocube-like Bi2O3 for high performance white light photocatalysis and antibacterial applications, J. Alloys Compd., 887(2021), art. No. 161432.
|
[[18]] |
A. Chinnathambi, Synthesis and characterization of spinel FeV2O4 coupled ZnO nanoplates for boosted white light photocatalysis and antibacterial applications, J. Alloys Compd., 890(2022), art. No. 161742.
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
S. Nakamura and A. Fuwa, Distinct evidence of orbital order in spinel oxide FeV2O4 by 57Fe mössbauer spectroscopy, J. Phys. Soc. Jpn., 85(2016), No. 1, art. No. 014702.
|
[[29]] |
S. Nakamura, K. Tasaki, and T. Katsufuji, Competitive local structure in mixed vanadium spinel Fe1−xMnxV2O4, [in] Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019), Okayama, 2019.
|
[[30]] |
|
[[31]] |
H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand., 57(1956), No. 4, art. No. 217.
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
/
〈 | 〉 |