Phase equilibria relations in the V2O5-rich part of the Fe2O3-TiO2-V2O5 system at 1200°C related to converter vanadium-bearing slag

Junjie Shi, Yumo Zhai, Yuchao Qiu, Changle Hou, Jingjing Dong, Maoxi Yao, Haolun Li, Yongrong Zhou, Jianzhong Li

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (9) : 2017-2024. DOI: 10.1007/s12613-024-2845-4
Research Article

Phase equilibria relations in the V2O5-rich part of the Fe2O3-TiO2-V2O5 system at 1200°C related to converter vanadium-bearing slag

Author information +
History +

Abstract

The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy. The key to developing novel processes and improving traditional routes lies in the thermodynamic data. In this study, the equilibrium phase relations for the Fe2O3-TiO2-V2O5 system at 1200°C in air were investigated using a high-temperature equilibrium-quenching technique, followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy. One liquid-phase region, two two-phase regions (liquid-rutile and liquid-ferropseudobrookite), and one three-phase region (liquid-rutile-ferropseudobrookite) were determined. The variation in the TiO2 and V2O5 contents with the Fe2O3 content was examined for rutile and ferropseudobrookite solid solutions. However, on further comparison with the predictions of FactSage 8.1, significant discrepancies were identified, highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems.

Keywords

vanadium-bearing slag / thermodynamics / FactSage / phase equilibria / recovery

Cite this article

Download citation ▾
Junjie Shi, Yumo Zhai, Yuchao Qiu, Changle Hou, Jingjing Dong, Maoxi Yao, Haolun Li, Yongrong Zhou, Jianzhong Li. Phase equilibria relations in the V2O5-rich part of the Fe2O3-TiO2-V2O5 system at 1200°C related to converter vanadium-bearing slag. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(9): 2017‒2024 https://doi.org/10.1007/s12613-024-2845-4

References

[[1]]
Pei GS, Xiang JY, Lv XW, Li G, Wu SS, Zhong DP, Lv W. High-temperature heat capacity and phase transformation kinetics of NaVO3. J. Alloys Compd., 2019, 794: 465,
CrossRef Google scholar
[[2]]
Liu SY, Zhen YL, He XB, Wang LJ, Chou K. Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis. Int. J. Miner. Metall. Mater., 2020, 27(12): 1678,
CrossRef Google scholar
[[3]]
Gao F, Olayiwola AU, Liu B, et al.. Review of vanadium production part I: Primary resources. Miner. Process. Extr. Metall. Rev., 2022, 43(4): 466,
CrossRef Google scholar
[[4]]
Chen BJ, Jiang T, Wen J, Yang GD, Yu TX, Zhu FX, Hu P. High-chromium vanadium-titanium magnetite all-pellet integrated burden optimization and softening-melting behavior based on flux pellets. Int. J. Miner. Metall. Mater., 2024, 31(3): 498,
CrossRef Google scholar
[[5]]
Li XS, Xie B, Wang GE, Li XJ. Oxidation process of low-grade vanadium slag in presence of Na2CO3. Trans. Nonferrous Met. Soc. China, 2011, 21(8): 1860,
CrossRef Google scholar
[[6]]
Liaoand JF, Zhao BJ. Phase equilibrium studies of titanomagnetite and ilmenite smelting slags. Int. J. Miner. Metall. Mater., 2022, 29(12): 2162,
CrossRef Google scholar
[[7]]
Wen J, Jiang T, Xu YZ, Cao J, Xue XX. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching. J. Ind. Eng. Chem., 2019, 71: 327,
CrossRef Google scholar
[[8]]
Yu TX, Jiang T, Wen J, Sun HY, Li M, Peng Y. Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag. Int. J. Miner. Metall. Mater., 2022, 29(12): 2144,
CrossRef Google scholar
[[9]]
Peng H, Guo J, Zheng XG, Liu ZH, Tao CY. Leaching kinetics of vanadium from calcification roasting converter vanadium slag in acidic medium. J. Environ. Chem. Eng., 2018, 6(4): 5119,
CrossRef Google scholar
[[10]]
Zhang JH, Zhang W, Xue ZL. Oxidation kinetics of vanadium slag roasting in the presence of calcium oxide. Miner. Process. Extr. Metall. Rev., 2017, 38(5): 265,
CrossRef Google scholar
[[11]]
H.Y. Gao, T. Jiang, M. Zhou, J. Wen, X. Li, Y. Wang, and X.X. Xue, Effect of microwave irradiation and conventional calcification roasting with calcium hydroxide on the extraction of vanadium and chromium from high-chromium vanadium slag, Miner. Eng., 145(2020), art. No. 106056.
[[12]]
Tian L, Xu ZF, Chen LJ, Liu Y, Zhang TA. Effect of microwave heating on the pressure leaching of vanadium from converter slag. Hydrometallurgy, 2019, 184: 45,
CrossRef Google scholar
[[13]]
Wen J, Jiang T, Gao HY, Liu YJ, Zheng XL, Xue XX. Comparison of ultrasound-assisted and regular leaching of vanadium and chromium from roasted high chromium vanadium slag. JOM, 2018, 70(2): 155,
CrossRef Google scholar
[[14]]
Zhao Q, Liu C, Mei X, Saxén H, Zevenhoven R. Research progress of steel slag-based carbon sequestration. Fundam. Res., 2022
[[15]]
Zhang XF, Liu FG, Xue XX, Jiang T. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content. J. Alloys Compd., 2016, 686: 356,
CrossRef Google scholar
[[16]]
Lee JC, Kurniawan, Kim EY, Chung KW, Kim R, Jeon HS. A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production. J. Mater. Res. Technol., 2021, 12: 343,
CrossRef Google scholar
[[17]]
Li HY, Fang HX, Wang K, et al.. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting-water leaching. Hydrometallurgy, 2015, 156: 124,
CrossRef Google scholar
[[18]]
Yan BJ, Wang DY, Qiu QG, Deng TF. Phase relations in the “FeO-V2O3” system at 1473 K and the magnetic properties of spinel phase Fe3VO4. Ceram. Int., 2020, 46(5): 6160,
CrossRef Google scholar
[[19]]
Xie W, Xing XR, Cao ZM. Phase equilibria in the Fe-V-O system near “FeO”-V2O3 isopleth. J. Am. Ceram. Soc., 2020, 103(9): 5312,
CrossRef Google scholar
[[20]]
Malan WD, Akdogan G, Taskinen P, Hamuyuni J, Zietsman J. Phase equilibria and thermodynamic evaluation of the Fe-V-O system in air. Calphad, 2018, 63: 12,
CrossRef Google scholar
[[21]]
Feng DS, Zhang JB, Li M, Chen M, Zhao BJ. Phase Equilibria of the SiO2-V2O5 system. Ceram. Int., 2020, 46(15): 24053,
CrossRef Google scholar
[[22]]
Coetsee T, Pistorius C. Preliminary observations on phase relations in the “V2O3-FeO” and V2O3-TiO2 systems from 1400°C to 1600°C in reducing atmospheres. J. Am. Ceram. Soc., 2000, 83: 1485,
CrossRef Google scholar
[[23]]
Yang Y, Mao HH, Chen HL, Selleby M. An assessment of the Ti-V-O system. J. Alloys Compd., 2017, 722: 365,
CrossRef Google scholar
[[24]]
Fotiev L, Tret’yakov A, Khim Z. Compatibility relations in the Fe2O3-TiO2-V2O5, Cr2O3-TiO2-V2O5 and Al2O3-TiO2-V2O5 systems. Russ. J. Inorg. Chem., 1981, 26: 1377
[[25]]
Malan WD, Akdogan G, Taskinen P, Zietsman J. Phase equilibria and thermodynamic evaluation of the Fe-Ti-V-O system in air. Calphad, 2019, 65: 141,
CrossRef Google scholar
[[26]]
Shi J, Qiu Y, Wan X, Yu B, Chen M, Zhao F, Li J, Liu C, Taskinen P. Equilibrium phase relations of the CaO-SiO2-Ti3O5 system at 1400°C and a p(O2) of 10−16 atm. JOM, 2022, 74: 668,
CrossRef Google scholar
[[27]]
Wan X, Shi J, Qiu Y, Chen M, Li J, Liu C, Taskinen P, Jokilaakso A. The effect of 15wt% Al2O3 addition on the equilibrium phase relations of CaO-SiO2-TiO2 system at 1400°C in air. Ceram. Int., 2021, 47: 24802,
CrossRef Google scholar
[[28]]
Li YD, Qiu YC, Shi JJ, Zhang BY, Meng F, Li JZ, Liu CS. Equilibrium phase relations of a SiO2-Al2O3-FeOx system with 10 wt% CaO addition for the production of continuous basalt fibers. ACS Omega, 2021, 6(33): 21465, pmcid: 8388073
CrossRef Pubmed Google scholar
[[29]]
Wan XB, Chen M, Qiu YC, Shi JJ, Li J, Liu CS, Taskinen P, Jokilaakso A. Influence of manganese oxide on the liquid-perovskite equilibrium in the CaO-SiO2-TiO2 system at 1400°C in air. Ceram. Int., 2021, 47(8): 11176,
CrossRef Google scholar
[[30]]
Qiu Y, Shi J, Yu B, Hou C, Dong J, Li S, Zhai Y, Li J, Liu C. Phase equilibria of MgO-Al2O3-TiO2 system at 1600°C in air: Emphasis on pseudobrookite and spinel solid solution phases. J. Am. Ceram. Soc., 2022, 105: 6953,
CrossRef Google scholar
[[31]]
Jung IH, Van Ende MA. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation. Metall. Mater. Trans. B, 2020, 51(5): 1851,
CrossRef Google scholar
[[32]]
Chen M, Wan XB, Shi JJ, Taskinen P, Jokilaakso A. Experimental study on the phase relations of the SiO2-MgO-TiO2 system in air at 1500°C. JOM, 2022, 74(2): 676,
CrossRef Google scholar
[[33]]
Chen M, Wan XB, Taskinen P, Sukhomlinov D, Shi JJ, Michallik R, Jokilaakso A. Phase equilibria in TiO2-rich part of the MgO-CaO-TiO2 system at 1500–1600°C. Ceram. Int., 2022, 48(14): 20116,
CrossRef Google scholar
[[34]]
Feng DS, Li M, Yee SL, Jiang Y, Chen M, Peng Y, Ma XD. Phase equilibrium studies in V2O5-Fe2O3 and V2O5-TiO2 systems. J. Am. Ceram. Soc., 2021, 104(9): 4843,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/