Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals

Anran Zhang , Xinquan Zhou , Ranran Gu , Zhiguo Xia

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1456 -1461.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1456 -1461. DOI: 10.1007/s12613-024-2844-5
Research Article

Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals

Author information +
History +
PDF

Abstract

Mn2+ doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nanocrystals (NCs). However, it is still difficult to understand the interplay of Mn2+ luminescence and the matrix self-trapped exciton (STE) emission therein. In this study, Mn2+-doped CsCdCl3 NCs are prepared by hot injection, in which CsCdCl3 is selected because of its unique crystal structure suitable for STE emission. The blue emission at 441 nm of undoped CsCdCl3 NCs originates from the defect states in the NCs. Mn2+ doping promotes lattice distortion of CsCdCl3 and generates bright orange-red light emission at 656 nm. The energy transfer from the STEs of CsCdCl3 to the excited levels of the Mn2+ ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl3:Mn2+ NCs. This work highlights the crucial role of energy transfer from STEs to Mn2+ dopants in Mn2+-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.

Keywords

perovskite nanocrystals / self-trapped excitons / luminescence / energy transfer

Cite this article

Download citation ▾
Anran Zhang, Xinquan Zhou, Ranran Gu, Zhiguo Xia. Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1456-1461 DOI:10.1007/s12613-024-2844-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen WB, Li W, Zhang XJ, et al. Carbon dots embedded in lead-free luminescent metal halides crystals towards single-component white emitters. Sci. China Mater., 2022, 65(10): 2802.

[2]

W.J. Zhu, W.B. Ma, Y.R. Su, et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators, Light Sci. Appl., 9(2020), art. No. 112.

[3]

Li MZ, Xia ZG. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev., 2021, 50(4): 2626.

[4]

Y.Y. Jing, Y. Liu, M.Z. Li, and Z.G. Xia, Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides, Adv. Opt. Mater., 9(2021), No. 8, art. No. 2002213.

[5]

Deng CK, Zhou GJ, Chen D, Zhao J, Wang YG, Liu QL. Broadband photoluminescence in 2D organic–inorganic hybrid perovskites: (C7H18N2)PbBr4 and (C9H22N2)PbBr4. J. Phys. Chem. Lett., 2020, 11(8): 2934.

[6]

Smith MD, Watson BL, Dauskardt RH, Karunadasa HI. Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids. Chem. Mater., 2017, 29(17): 7083.

[7]

V. Morad, S. Yakunin, B.M. Benin, et al., Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography, Adv. Mater., 33(2021), No. 9, art. No. 2007355.

[8]

T. Jun, K. Sim, S. Iimura, et al., Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure, Adv. Mater., 30(2018), No. 43, art. No. 1804547.

[9]

L.Y. Lian, M.Y. Zheng, W.Z. Zhang, et al., Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons, Adv. Sci., 7(2020), No. 11, art. No. 2000195.

[10]

J.H. Han, T. Samanta, Y.M. Park, et al., Effect of self-trapped excitons in the optical properties of manganese-alloyed hexagonal-phased metal halide perovskite, Chem. Eng. J., 450(2022), art. No. 138325.

[11]

W.Y. Jia, Q.L. Wei, S.F. Yao, et al., Magnetic coupling for highly efficient and tunable emission in CsCdX3:Mn perovskites, J. Lumin., 257(2023), art. No. 119657.

[12]

Z. Tang, R.Z. Liu, J.S. Chen, et al., Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3:Mn perovskite single crystals, Angew. Chem. Int. Ed., 61(2022), No. 51, art. No. e202210975.

[13]

B.B. Su, G.J. Zhou, J.L. Huang, E.H. Song, A. Nag, and Z.G. Xia, Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application, Laser Photonics Rev., 15(2021), No. 1, art. No. 2000334.

[14]

Locardi F, Cirignano M, Baranov D, et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc., 2018, 140(40): 12989.

[15]

Adhikari SD, Dutta A, Dutta SK, Pradhan N. Layered perovskites L2(Pb1−xMnx)Cl4 to Mn-doped CsPbCl3 perovskite platelets. ACS Energy Lett., 2018, 3(6): 1247.

[16]

Yuan X, Ji SH, Siena MCD, et al. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration. Chem. Mater., 2017, 29(18): 8003.

[17]

Xu KY, Meijerink A. Tuning exciton–Mn2+ energy transfer in mixed halide perovskite nanocrystals. Chem. Mater., 2018, 30(15): 5346.

[18]

X.Q. Zhou, K. Han, Y.X. Wang, et al., Energy-trapping management in X-ray storage phosphors for flexible 3D imaging, Adv. Mater., 35(2023), No. 16, art. No. 2212022.

[19]

Zhang AR, Liu Y, Liu GC, Xia ZG. Dopant and compositional modulation triggered broadband and tunable near-infrared emission in Cs2Ag1−xNaxInCl6:Cr3+ nanocrystals. Chem. Mater., 2022, 34(7): 3006.

[20]

Demirbilek R, Bozdoğan , Çalışkan M, Asan G, Özen G. Electronic energy levels of CsCdCl3. J. Lumin., 2011, 131(9): 1853.

[21]

Zhang Y, Zhou L, Li D, et al. Realizing efficient emission in three-dimensional CsCdCl3 single crystals by introducing separated emitting centers. Inorg. Chem., 2022, 61(44): 17902.

[22]

Leng MY, Yang Y, Chen ZW, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett., 2018, 18(9): 6076.

[23]

Jing YY, Liu Y, Zhao J, Xia ZG. Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett., 2019, 10(23): 7439.

[24]

Liu Y, Jing YY, Zhao J, Liu QL, Xia ZG. Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield. Chem. Mater., 2019, 31(9): 3333.

[25]

Huang YX, Pan YX, Guo ST, Peng CD, Lian HZ, Lin J. Large spectral shift of Mn2+ emission due to the shrinkage of the crystalline host lattice of the hexagonal CsCdCl3 crystals and phase transition. Inorg. Chem., 2022, 61(21): 8356.

[26]

W. Zhang, J.J. Wei, Z.L. Gong, et al., Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals, Adv. Sci., 7(2020), No. 22, art. No. 2002210.

[27]

Arunkumar P, Gil KH, Won S, et al. Colloidal organolead halide perovskite with a high Mn solubility limit: A step toward Pb-free luminescent quantum dots. J. Phys. Chem. Lett., 2017, 8(17): 4161.

[28]

R. Yang, D. Yang, M. Wang, et al., High-efficiency and stable long-persistent luminescence from undoped cesium cadmium chlorine crystals induced by intrinsic point defects, Adv. Sci., 10(2023), No. 15, art. No. 2207331.

[29]

S.S. He, Q.P. Qiang, T.C. Lang, et al., Highly stable orange-red long-persistent luminescent CsCdCl3:Mn2+ perovskite crystal, Angew. Chem. Int. Ed., 61(2022), No. 48, art. No. e202208937.

[30]

S.G. Ge, H. Peng, Q.L. Wei, et al., Realizing color-tunable and time-dependent ultralong afterglow emission in antimony-doped CsCdCl3 metal halide for advanced anti-counterfeiting and information encryption, Adv. Opt. Mater., 11(2023), No. 14, art. No. 2300323.

[31]

Dong WX, Xu YC, Su P, et al. Excitation wavelength-dependent long-afterglow Sb, Mn-doped CsCdCl3 perovskite for anti-counterfeiting applications. Ceram. Int., 2024, 50(4): 6374.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/