Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals
Anran Zhang, Xinquan Zhou, Ranran Gu, Zhiguo Xia
Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals
Mn2+ doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nanocrystals (NCs). However, it is still difficult to understand the interplay of Mn2+ luminescence and the matrix self-trapped exciton (STE) emission therein. In this study, Mn2+-doped CsCdCl3 NCs are prepared by hot injection, in which CsCdCl3 is selected because of its unique crystal structure suitable for STE emission. The blue emission at 441 nm of undoped CsCdCl3 NCs originates from the defect states in the NCs. Mn2+ doping promotes lattice distortion of CsCdCl3 and generates bright orange-red light emission at 656 nm. The energy transfer from the STEs of CsCdCl3 to the excited levels of the Mn2+ ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl3:Mn2+ NCs. This work highlights the crucial role of energy transfer from STEs to Mn2+ dopants in Mn2+-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
perovskite nanocrystals / self-trapped excitons / luminescence / energy transfer
[[1]] |
|
[[2]] |
W.J. Zhu, W.B. Ma, Y.R. Su, et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators, Light Sci. Appl., 9(2020), art. No. 112.
|
[[3]] |
|
[[4]] |
Y.Y. Jing, Y. Liu, M.Z. Li, and Z.G. Xia, Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides, Adv. Opt. Mater., 9(2021), No. 8, art. No. 2002213.
|
[[5]] |
|
[[6]] |
|
[[7]] |
V. Morad, S. Yakunin, B.M. Benin, et al., Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography, Adv. Mater., 33(2021), No. 9, art. No. 2007355.
|
[[8]] |
T. Jun, K. Sim, S. Iimura, et al., Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure, Adv. Mater., 30(2018), No. 43, art. No. 1804547.
|
[[9]] |
L.Y. Lian, M.Y. Zheng, W.Z. Zhang, et al., Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons, Adv. Sci., 7(2020), No. 11, art. No. 2000195.
|
[[10]] |
J.H. Han, T. Samanta, Y.M. Park, et al., Effect of self-trapped excitons in the optical properties of manganese-alloyed hexagonal-phased metal halide perovskite, Chem. Eng. J., 450(2022), art. No. 138325.
|
[[11]] |
W.Y. Jia, Q.L. Wei, S.F. Yao, et al., Magnetic coupling for highly efficient and tunable emission in CsCdX3:Mn perovskites, J. Lumin., 257(2023), art. No. 119657.
|
[[12]] |
Z. Tang, R.Z. Liu, J.S. Chen, et al., Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3:Mn perovskite single crystals, Angew. Chem. Int. Ed., 61(2022), No. 51, art. No. e202210975.
|
[[13]] |
B.B. Su, G.J. Zhou, J.L. Huang, E.H. Song, A. Nag, and Z.G. Xia, Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application, Laser Photonics Rev., 15(2021), No. 1, art. No. 2000334.
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
X.Q. Zhou, K. Han, Y.X. Wang, et al., Energy-trapping management in X-ray storage phosphors for flexible 3D imaging, Adv. Mater., 35(2023), No. 16, art. No. 2212022.
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
W. Zhang, J.J. Wei, Z.L. Gong, et al., Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals, Adv. Sci., 7(2020), No. 22, art. No. 2002210.
|
[[27]] |
|
[[28]] |
R. Yang, D. Yang, M. Wang, et al., High-efficiency and stable long-persistent luminescence from undoped cesium cadmium chlorine crystals induced by intrinsic point defects, Adv. Sci., 10(2023), No. 15, art. No. 2207331.
|
[[29]] |
S.S. He, Q.P. Qiang, T.C. Lang, et al., Highly stable orange-red long-persistent luminescent CsCdCl3:Mn2+ perovskite crystal, Angew. Chem. Int. Ed., 61(2022), No. 48, art. No. e202208937.
|
[[30]] |
S.G. Ge, H. Peng, Q.L. Wei, et al., Realizing color-tunable and time-dependent ultralong afterglow emission in antimony-doped CsCdCl3 metal halide for advanced anti-counterfeiting and information encryption, Adv. Opt. Mater., 11(2023), No. 14, art. No. 2300323.
|
[[31]] |
|
/
〈 | 〉 |