A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties
Xiaorui Zhang, Min Zou, Song Lu, Longfei Li, Xiaoli Zhuang, Qiang Feng
A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties
A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared, and the evaluation of its high-temperature microstructural stability, oxidation resistance, and mechanical properties was conducted mainly using its cast polycrystalline alloy. The results disclosed that the morphology of the γ′ phase remained stable, and the coarsening rate was slow during the long-term aging at 900–1000°C. The activation energy for γ′ precipitate coarsening of alloy 9CoNi-Cr was (402 ± 51) kJ/mol, which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys. Importantly, there was no indication of the formation of topologically close-packed phases during this process. All these factors demonstrated the superior microstructural stability of the alloy. The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm2 after oxidation at 1000°C for 100 h, and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4, which can be attributed to the formation of a continuous Al2O3 protective layer. Moreover, the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950°C is comparable to that of the conventional Ni-based cast superalloy, demonstrating the alloy’s good mechanical properties at high temperature. This is partially because high Cr is beneficial in improving the γ and γ′ phase strengths of alloy 9CoNi-Cr.
CoNi-based superalloys / microstructure / coarsening / oxidation / mechanical properties
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
D.S. Ng, D.W. Chung, J.P. Toinin, D.N. Seidman, D.C. Dunand, and E.A. Lass, Effect of Cr additions on a γ-γ′ microstructure and creep behavior of a Co-based superalloy with low W content, Mater. Sci. Eng. A, 778(2020), art. No. 139108.
|
[[8]] |
X.L. Zhuang, S. Antonov, L.F. Li, and Q. Feng, Effect of alloying elements on the coarsening rate of γ′ precipitates in multicomponent CoNi-based superalloys with high Cr content, Scripta Mater., 202(2021), art. No. 114004.
|
[[9]] |
|
[[10]] |
|
[[11]] |
X.L. Zhuang, S. Lu, L.F. Li, and Q. Feng, Microstructures and properties of a novel γ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method, Mater. Sci. Eng. A, 780(2020), art. No. 139219.
|
[[12]] |
M. Zou, W. Li, L. Li, J.C. Zhao, and Q. Feng, Machine learning assisted design approach for developing γ′-strengthened Co–Ni-base superalloys, [in] Proceedings of the 14th International Symposium on Superalloys, Pennsylvania, 2021, p. 937.
|
[[13]] |
W.D. Li, L.F. Li, S. Antonov, F. Lu, and Q. Feng, Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co–Ni-base superalloys, J. Alloys Compd., 826(2020), art. No. 154182.
|
[[14]] |
S.A. Forsik, N. Zhou, and T. Wang, Recent developments in the design of next generation γ′-strengthened cobalt-nickel superalloys, [in] Proceedings of the 14th International Symposium on Superalloys, Pennsylvania, 2021, p. 847.
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
S.M. Das, M.P. Singh, and K. Chattopadhyay, Effect of Cr addition on the evolution of protective alumina scales and the oxidation properties of a Ta stabilized γ′-strengthened Co-Ni-Al-Mo-Ta-Ti alloy, Corros. Sci., 172(2020), art. No. 108683.
|
[[19]] |
H.J. Zhou, W.D. Li, F. Xue, L. Zhang, X.H. Qu, and Q. Feng, Alloying effects on microstructural stability and γ′ phase Nanohardness in Co–Al–W–Ta–Ti-base superalloys, [in] Proceedings of the 13th International Symposium on Superalloys, Pennsylvania, 2016, p. 981.
|
[[20]] |
L.J. Li, L. Wang, Z.D. Liang, et al., Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co- and CoNi-base superalloys, Mater. Des., 224(2022), art. No. 111291.
|
[[21]] |
X.L. Zhuang, S. Antonov, W.D. Li, S. Lu, L.F. Li, and Q. Feng, Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework, Acta Mater., 243(2023), art. No. 118525.
|
[[22]] |
S. Lu, M. Zou, X.R. Zhang, et al., Data-driven “cross-component” design and optimization of γ′-strengthened Co-based superalloys, Adv. Eng. Mater., 25(2023), art. No. 2201257.
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
F. Mastromatteo, F. Niccolai, M. Giannozzi, and U. Bardi, The coarsening kinetic of γ′ particles in nickel-based superalloys during aging at high temperatures, [in] Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Barcelona, 2004, p. 851.
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Creep strength and microstructure of polycrystalline γ′-strengthened cobalt-base superalloys, [in] Proceedings of the 12th International Symposium on Superalloys, Pennsylvania, 2012, p. 695.
|
[[42]] |
|
[[43]] |
W.D. Li, L.F. Li, S. Antonov, and Q. Feng, Effective design of a Co–Ni–Al–W–Ta–Ti alloy with high γ′ solvus temperature and microstructural stability using combined CALPHAD and experimental approaches, Mater. Des., 180(2019), art. No. 107912.
|
[[44]] |
|
[[45]] |
|
[[46]] |
|
[[47]] |
|
[[48]] |
|
[[49]] |
|
[[50]] |
|
[[51]] |
|
[[52]] |
|
/
〈 | 〉 |