Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications
Panpan Che, Baoshan Xie, Penghui Cao, Youfu Lv, Daifei Liu, Huali Zhu, Xianwen Wu, Zhangxing He, Jian Chen, Chuanchang Li
Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications
The combination of electrospinning and hot pressing, namely the electrospinning-hot pressing technique (EHPT), is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance. The emerging composite membrane prepared by EHPT, which exhibits the advantages of large surface area, controllable morphology, and compact structure, has attracted immense attention. In this paper, the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed. Moreover, the state-of-the-art applications of composite membranes in these two fields are introduced. In particular, in the field of thermal energy storage, EHPT-prepared membranes have longitudinal and transverse nanofibers, which generate unique thermal conductivity pathways; also, these nanofibers offer enough space for the filling of functional materials. Moreover, EHPT-prepared membranes are beneficial in thermal management systems, building energy conservation, and electrical energy storage, e.g., improving the electrochemical properties of the separators as well as their mechanical and thermal stability. The application of electrospinning-hot pressing membranes on capacitors, lithium-ion batteries (LIBs), fuel cells, sodium-ion batteries (SIBs), and hydrogen bromine flow batteries (HBFBs) still requires examination. In the future, EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.
electrospinning-hot pressing technique / thermal storage / electrical storage / composite membranes / nanofiber
[1] |
S. Boadu and E. Otoo, A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations, Renewable Sustainable Energy Rev., 191(2024), art. No. 114035.
|
[2] |
Q.Y. Zhang, X.Q. Mao, J.H. Lu, et al., EU-Russia energy decoupling in combination with the updated NDCs impacts on global fossil energy trade and carbon emissions, Appl. Energy, 356(2024), art. No. 122415.
|
[3] |
Y.T. Zhou, Z.J. Ma, X.Y. Shi, and S.L. Zou, Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint, Energy, 288(2024), art. No. 129732.
|
[4] |
Y.S. Zhang, C. Ma, Y. Yang, X.L. Pang, J.J. Lian, and X. Wang, Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind, Energy, 259(2022), art. No. 125012.
|
[5] |
T. Capurso, M. Stefanizzi, M. Torresi, and S.M. Camporeale, Perspective of the role of hydrogen in the 21st century energy transition, Energy Convers. Manage., 251(2022), art. No. 114898.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
J. Jyoti, T.K. Gupta, B.P. Singh, M. Sandhu, and S.K. Tripathi, Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications, J. Energy Storage, 50(2022), art. No. 104235.
|
[12] |
R. Cheng, Y.F. Wang, R.J. Men, et al. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage, iScience, 25(2022), No. 8, art. No. 104837.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
X.X. Wang, G.F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y.Z. Long, Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications, Prog. Mater. Sci., 115(2021), art. No. 100704.
|
[19] |
C. Zhang, X.R. Wang, A.H. Liu, C.J. Pan, H.Y. Ding, and W. Ye, Reduced graphene oxide/titanium dioxide hybrid nano-filler-reinforced electrospun silk fibroin scaffolds for tissue engineering, Mater. Lett., 291(2021), art. No. 129563.
|
[20] |
S. Yadav, M.D.R. Kok, A. Forner-Cuenca, et al., Fabrication of high surface area ribbon electrodes for use in redox flow batteries via coaxial electrospinning, J. Energy Storage, 33(2021), art. No. 102079.
|
[21] |
W. Yang, Y.Q. Zhan, Q.Y. Feng, A. Sun, and H.Y. Dong, Flexible h-BN/fluorinated poly (arylene ether nitrile) fibrous composite film with low dielectric constant and high thermal conductivity fabricated via coaxial electrospinning hot-pressing technique, Colloids Surf. A, 649(2022), art. No. 129455.
|
[22] |
|
[23] |
N. Shen, S. Chen, R.Q. Huang, et al. Vanadium dioxide for thermochromic smart windows in ambient conditions, Mater. Today Energy, 21(2021), art. No. 100827.
|
[24] |
|
[25] |
J. Wang, S. Liang, J. Xiong, et al., High energy density nanocomposites with layered gradient structure and lysozyme-modified Ba0.6Sr0.4TiO3 nanoparticles, Composites Part A, 163(2022), art. No. 107254.
|
[26] |
|
[27] |
|
[28] |
R.B. Yilmaz, G. Bayram, and U. Yilmazer, Effect of halloysite nanotubes on multifunctional properties of coaxially electrospun poly(ethylene glycol)/polyamide-6 nanofibrous thermal energy storage materials, Thermochim. Acta, 690(2020), art. No. 178673.
|
[29] |
F. Naseri, S. Karimi, E. Farjah, and E. Schaltz, Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques, Renewable Sustainable Energy Rev., 155(2022), art. No. 111913.
|
[30] |
Y. Xiao, F.Q. Yang, Z.H. Gao, et al., Review of mechanical abuse related thermal runaway models of lithium-ion batteries at different scales, J. Energy Storage, 64(2023), art. No. 107145.
|
[31] |
M.L. He, R. Davis, D. Chartouni, et al., Assessment of the first commercial Prussian blue based sodium-ion battery, J. Power Sources, 548(2022), art. No. 232036.
|
[32] |
|
[33] |
A. Al-Othman, M. Tawalbeh, R. Martis, et al., Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects, Energy Convers. Manage., 253(2022), art. No. 115154.
|
[34] |
|
[35] |
|
[36] |
H.L. Liu, X.Y. Liu, J.Y. Yu, Y.T. Liu, and B. Ding, Recent progress in electrospun Al2O3 nanofibers: Component design, structure regulation and performance optimization, Appl. Mater. Today, 29(2022), art. No. 101675.
|
[37] |
L. Yang, L. Zhang, and C.Z. Li, Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites, Compos. Sci. Technol., 200(2020), art. No. 108429.
|
[38] |
|
[39] |
Z.Q. Wei, X.D. Kong, J.Z. Cheng, H. Zhou, J.H. Yu, and S.R. Lu, Constructing a “Pearl-Necklace-Like” architecture for enhancing thermal conductivity of composite films by electro-spinning, Compos. Commun., 29(2022), art. No. 101036.
|
[40] |
F. Haghighat, S.A.H. Ravandi, M.N. Esfahany, A. Valipouri, and Z. Zarezade, Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions, Appl. Therm. Eng., 161(2019), art. No. 113924.
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
S. Wang, H.T. Shi, Y.H. Xia, et al., Electrospun-based nanofibers for sodium and potassium ion storage: Structure design for alkali metal ions with large radius, J. Alloys Compd., 918(2022), art. No. 165680.
|
[47] |
S.K. Zhang, Z.G. Xu, H.H. Duan, et al., N-doped carbon nanofibers with internal cross-linked multiple pores for both ultralong cycling life and high capacity in highly durable K-ion battery anodes, Electrochim. Acta, 337(2020), art. No. 135767.
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, et al., Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation, J. Polym. Res., 24(2017), No. 2, art. No. 27.
|
[53] |
X.X. Guo, S.J. Cheng, W.W. Cai, Y.F. Zhang, and X.A. Zhang, A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties, Mater. Des., 209(2021), art. No. 109936.
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
Y.Q. Guo, L.L. Pan, X.T. Yang, et al., Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology, Composites Part A, 124(2019), art. No. 105484.
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
A.R. Selvaraj, I.S. Raja, D. Chinnadurai, et al., Electrospun One Dimensional (1D) Pseudocapacitive nanorods embedded carbon nanofiber as positrode and graphene wrapped carbon nanofiber as negatrode for enhanced electrochemical energy storage, J. Energy Storage, 46(2022), art. No. 103731.
|
[66] |
X. Liu, C.M. Wang, Z.Y. Cai, Z.J. Hu, and P. Zhu, Fabrication and characterization of polyacrylonitrile and polyethylene glycol composite nanofibers by electrospinning, J. Energy Storage, 53(2022), art. No. 105171.
|
[67] |
Z. Lule and J. Kim, Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride, Composites Part A, 124(2019), art. No. 105506.
|
[68] |
|
[69] |
X.L. Hu, M. Huang, N.Z. Kong, F. Han, R.X. Tan, and Q.Z. Huang, Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by SiC ceramic coating for efficient thermal interface materials, Composites Part B, 227(2021), art. No. 109398.
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
X.J. Liu and Z.H. Rao, Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials, J. Energy Storage, 32(2020), art. No. 101860.
|
[75] |
X.T. Yang, Y.Q. Guo, Y.X. Han, et al., Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology, Composites Part B, 175(2019), art. No. 107070.
|
[76] |
K. Zhao, S.Y. Wei, M. Cao, et al., Dielectric polyimide composites with enhanced thermal conductivity and excellent electrical insulation properties by constructing 3D oriented heat transfer network, Compos. Sci. Technol., 245(2024), art. No. 110323.
|
[77] |
Y. Zhang, Z.H. Zhao, M.H. Chen, H. Wu, S.Y. Guo, and J.H. Qiu, Constructing interconnected network of MWCNT and BNNS in electrospun TPU films: Achieving excellent thermal conduction yet electrical insulation properties, Carbon, 218(2024), art. No. 118691.
|
[78] |
|
[79] |
G. Yang, X.D. Zhang, Y. Shang, et al., Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets, Compos. Sci. Technol., 201(2021), art. No. 108521.
|
[80] |
H. Wang, Y. Zhang, H.T. Niu, et al., An electrospinning–electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films, Composites Part B, 230(2022), art. No. 109505.
|
[81] |
B.K. Yu, J. Fan, J.X. He, et al., Boron nitride nanosheets: Large-scale exfoliation in NaOH–LiCl solution and their highly thermoconductive insulating nanocomposite paper with PI via electrospinning-electrospraying, J. Alloys Compd., 930(2023), art. No. 167303.
|
[82] |
|
[83] |
Y.J. Ke, J.W. Chen, G.J. Lin, et al., Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond, Adv. Energy Mater., 9(2019), No. 39, art. No. 1902066.
|
[84] |
|
[85] |
|
[86] |
|
[87] |
P.P. Che, C.C. Li, B.S. Xie, and N. Wang, Transparent thermochromic VO2/PAN nanocomposite films prepared by electrospinning-hot pressing technique, Therm. Sci. Eng. Prog., 47(2024), art. No. 102334.
|
[88] |
|
[89] |
|
[90] |
Z.X. Liu, Y.Y. Gu, and L. Bi, Applications of electrospun nanofibers in solid oxide fuel cells–A review, J. Alloys Compd., 937(2023), art. No. 168288.
|
[91] |
|
[92] |
|
[93] |
|
[94] |
L. Yang, Q.Y. Zhao, K.N. Chen, et al., Simultaneously realizing ultra-high energy density and discharge efficiency in PVDF composites loaded with highly aligned hollow MnO2 microspheres, Composites Part A, 132(2020), art. No. 105820.
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
J. Wang, Z. Yang, J.Y. Jiang, C.Y. Deng, and K.J. Zhu, Enhanced breakdown strength and energy density of multilayered P(VDF-HFP)/Nd-doped BaTiO3 nanofibers composites, Chem. Eng. J., 427(2022), art. No. 131811.
|
[100] |
|
[101] |
|
[102] |
|
[103] |
Q. Wei, Y.Y. Wu, S.J. Li, R. Chen, J.H. Ding, and C.Y. Zhang, Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review, Sci. Total Environ., 866(2023), art. No. 161380.
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
S.J. Jia, Y.H. Liang, and N. Yang, High performance of poly-acrylonitrile/[Mg–Al]-layered double hydroxide composite nanofiber separators for safe lithium-ion batteries, Solid State Ion., 370(2021), art. No. 115735.
|
[114] |
S. Mallick and D. Gayen, Thermal behaviour and thermal runaway propagation in lithium-ion battery systems–A critical review, J. Energy Storage, 62(2023), art. No. 106894.
|
[115] |
H.L. Li, T.T. Feng, Y.F. Liang, and M.Q. Wu, Construction of PMIA@PAN/PVDF-HFP/TiO2 coaxial fibrous separator with enhanced mechanical strength and electrolyte affinity for lithium-ion batteries, Chin. Chem. Lett., 34(2023), No. 12, art. No. 108350.
|
[116] |
Q.S. Fu, W. Zhang, I.P. Muhammad, et al., Coaxially electrospun PAN/HCNFs@PVDF/UiO-66 composite separator with high strength and thermal stability for lithium-ion battery, Microporous Mesoporous Mater., 311(2021), art. No. 110724.
|
[117] |
O.J. Sanumi, P.G. Ndungu, and B.O. Oboirien, Challenges of 3D printing in LIB electrodes: Emphasis on material-design properties, and performance of 3D printed Si-based LIB electrodes, J. Power Sources, 543(2022), art. No. 231840.
|
[118] |
|
[119] |
L.Y. Yang, J.H. Cao, B.R. Cai, T. Liang, and D.Y. Wu, Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries, Electrochim. Acta, 382(2021), art. No. 138346.
|
[120] |
|
[121] |
Y. Leng, P.W. Ming, D.J. Yang, and C.M. Zhang, Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451(2020), art. No. 227783.
|
[122] |
|
[123] |
|
[124] |
|
[125] |
S. Kabir, S. Medina, G.X. Wang, G. Bender, S. Pylypenko, and K.C. Neyerlin, Improving the bulk gas transport of Fe–N–C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications, Nano Energy, 73(2020), art. No. 104791.
|
[126] |
|
[127] |
|
[128] |
M. Oroujzadeh, M. Etesami, and S. Mehdipour-Ataei, Poly(ether ketone) composite membranes by electrospinning for fuel cell applications, J. Power Sources, 434(2019), art. No. 226733.
|
[129] |
|
[130] |
S.M. Abu, M.A. Hannan, M.S.H. Lipu, et al., State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions, J. Cleaner Prod., 394(2023), art. No. 136246.
|
[131] |
|
[132] |
|
[133] |
|
[134] |
|
[135] |
B. He, K.B. Yin, W.B. Gong, et al., NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries, Nano Energy, 82(2021), art. No. 105764.
|
[136] |
S. Kim, M.S. Kwon, J.H. Han, et al., Poly(ethylene-co-vinyl acetate)/polyimide/poly(ethylene-co-vinyl acetate) tri-layer porous separator with high conductivity and tailored thermal shutdown function for application in sodium-ion batteries, J. Power Sources, 482(2021), art. No. 228907.
|
[137] |
|
[138] |
K. Saadi, S.S. Hardisty, Z. Tatus-Portnoy, and D. Zitoun, Influence of loading, metallic surface state and surface protection in precious group metal hydrogen electrocatalyst for H2/Br2 redox-flow batteries, J. Power Sources, 536(2022), art. No. 231494.
|
[139] |
S. Abbasi, A. Forner-Cuenca, W. Kout, K. Nijmeijer, and Z. Borneman, Low-cost wire-electrospun sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membranes for hydrogen-bromine flow batteries, J. Membr. Sci., 628(2021), art. No. 119258.
|
[140] |
Y.A. Hugo, W. Kout, A. Forner-Cuenca, Z. Borneman, and K. Nijmeijer, Wire based electrospun composite short side chain perfluorosulfonic acid/polyvinylidene fluoride membranes for hydrogen-bromine flow batteries, J. Power Sources, 497(2021), art. No. 229812.
|
/
〈 | 〉 |