Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications

Panpan Che, Baoshan Xie, Penghui Cao, Youfu Lv, Daifei Liu, Huali Zhu, Xianwen Wu, Zhangxing He, Jian Chen, Chuanchang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (9) : 1945-1964. DOI: 10.1007/s12613-024-2842-7
Invited Review

Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications

Author information +
History +

Abstract

The combination of electrospinning and hot pressing, namely the electrospinning-hot pressing technique (EHPT), is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance. The emerging composite membrane prepared by EHPT, which exhibits the advantages of large surface area, controllable morphology, and compact structure, has attracted immense attention. In this paper, the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed. Moreover, the state-of-the-art applications of composite membranes in these two fields are introduced. In particular, in the field of thermal energy storage, EHPT-prepared membranes have longitudinal and transverse nanofibers, which generate unique thermal conductivity pathways; also, these nanofibers offer enough space for the filling of functional materials. Moreover, EHPT-prepared membranes are beneficial in thermal management systems, building energy conservation, and electrical energy storage, e.g., improving the electrochemical properties of the separators as well as their mechanical and thermal stability. The application of electrospinning-hot pressing membranes on capacitors, lithium-ion batteries (LIBs), fuel cells, sodium-ion batteries (SIBs), and hydrogen bromine flow batteries (HBFBs) still requires examination. In the future, EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.

Keywords

electrospinning-hot pressing technique / thermal storage / electrical storage / composite membranes / nanofiber

Cite this article

Download citation ▾
Panpan Che, Baoshan Xie, Penghui Cao, Youfu Lv, Daifei Liu, Huali Zhu, Xianwen Wu, Zhangxing He, Jian Chen, Chuanchang Li. Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(9): 1945‒1964 https://doi.org/10.1007/s12613-024-2842-7

References

[1]
S. Boadu and E. Otoo, A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations, Renewable Sustainable Energy Rev., 191(2024), art. No. 114035.
[2]
Q.Y. Zhang, X.Q. Mao, J.H. Lu, et al., EU-Russia energy decoupling in combination with the updated NDCs impacts on global fossil energy trade and carbon emissions, Appl. Energy, 356(2024), art. No. 122415.
[3]
Y.T. Zhou, Z.J. Ma, X.Y. Shi, and S.L. Zou, Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint, Energy, 288(2024), art. No. 129732.
[4]
Y.S. Zhang, C. Ma, Y. Yang, X.L. Pang, J.J. Lian, and X. Wang, Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind, Energy, 259(2022), art. No. 125012.
[5]
T. Capurso, M. Stefanizzi, M. Torresi, and S.M. Camporeale, Perspective of the role of hydrogen in the 21st century energy transition, Energy Convers. Manage., 251(2022), art. No. 114898.
[6]
Zhang JJ, Zhang B, Xie XB, et al.. Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review. Int. J. Miner. Metall. Mater., 2023, 30(1): 14,
CrossRef Google scholar
[7]
Hu JY, Yang GF, Song ZO, Kang CQ. Preliminary discussion on the supporting policies and the China’s development model of the new energy storage. Power Syst. Technol., 2024, 48(2): 469
[8]
Yilmaz B, Yüksel B, Orhan G, Aydin D, Utlu Z. Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage. Int. J. Miner. Metall. Mater., 2020, 27(1): 112,
CrossRef Google scholar
[9]
Chen Y, Zhang KL, Li N, et al.. Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications. J. Miner. Metall. Mater., 2023, 30(1): 33
[10]
Giro-Paloma J, Martínez M, Cabeza LF, Fernández AI. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renewable Sustainable Energy Rev., 2016, 53: 1059,
CrossRef Google scholar
[11]
J. Jyoti, T.K. Gupta, B.P. Singh, M. Sandhu, and S.K. Tripathi, Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications, J. Energy Storage, 50(2022), art. No. 104235.
[12]
R. Cheng, Y.F. Wang, R.J. Men, et al. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage, iScience, 25(2022), No. 8, art. No. 104837.
[13]
Taylor G I. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A, 1964, 280(1382): 383,
CrossRef Google scholar
[14]
Brown TD, Dalton PD, Hutmacher DW. Melt electro-spinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci., 2016, 56: 116,
CrossRef Google scholar
[15]
Isik BS, Altay F, Capanoglu E. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chem., 2018, 265: 260,
CrossRef Google scholar
[16]
Chen MJ, Zhang YC, Li HY, et al.. An example of industrialization of melt electrospinning: Polymer melt differential electrospinning. Adv. Ind. Eng. Polym. Res., 2019, 2(3): 110
[17]
Karim M, Fathi M, Soleimanian-Zad S. Incorporation of zein nanofibers produced by needle-less electrospinning within the casted gelatin film for improvement of its physical properties. Food Bioprod. Process., 2020, 122: 193,
CrossRef Google scholar
[18]
X.X. Wang, G.F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y.Z. Long, Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications, Prog. Mater. Sci., 115(2021), art. No. 100704.
[19]
C. Zhang, X.R. Wang, A.H. Liu, C.J. Pan, H.Y. Ding, and W. Ye, Reduced graphene oxide/titanium dioxide hybrid nano-filler-reinforced electrospun silk fibroin scaffolds for tissue engineering, Mater. Lett., 291(2021), art. No. 129563.
[20]
S. Yadav, M.D.R. Kok, A. Forner-Cuenca, et al., Fabrication of high surface area ribbon electrodes for use in redox flow batteries via coaxial electrospinning, J. Energy Storage, 33(2021), art. No. 102079.
[21]
W. Yang, Y.Q. Zhan, Q.Y. Feng, A. Sun, and H.Y. Dong, Flexible h-BN/fluorinated poly (arylene ether nitrile) fibrous composite film with low dielectric constant and high thermal conductivity fabricated via coaxial electrospinning hot-pressing technique, Colloids Surf. A, 649(2022), art. No. 129455.
[22]
Chen J, Huang XY, Sun B, Jiang PK. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano, 2019, 13(1): 337,
CrossRef Google scholar
[23]
N. Shen, S. Chen, R.Q. Huang, et al. Vanadium dioxide for thermochromic smart windows in ambient conditions, Mater. Today Energy, 21(2021), art. No. 100827.
[24]
Byun S, Lee SH, Song D, Ryou MH, Lee YM, Park WH. A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries. J. Ind. Eng. Chem., 2019, 72: 390,
CrossRef Google scholar
[25]
J. Wang, S. Liang, J. Xiong, et al., High energy density nanocomposites with layered gradient structure and lysozyme-modified Ba0.6Sr0.4TiO3 nanoparticles, Composites Part A, 163(2022), art. No. 107254.
[26]
Bognitzki M, Czado W, Frese T, et al.. Nanostructured fibers via electrospinning. Adv. Mater., 2001, 13(1): 70,
CrossRef Google scholar
[27]
Ding YC, Wu Q, Zhao D, Ye W, Hanif M, Hou HQ. Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying. Eur. Polym. J., 2013, 49(9): 2567,
CrossRef Google scholar
[28]
R.B. Yilmaz, G. Bayram, and U. Yilmazer, Effect of halloysite nanotubes on multifunctional properties of coaxially electrospun poly(ethylene glycol)/polyamide-6 nanofibrous thermal energy storage materials, Thermochim. Acta, 690(2020), art. No. 178673.
[29]
F. Naseri, S. Karimi, E. Farjah, and E. Schaltz, Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques, Renewable Sustainable Energy Rev., 155(2022), art. No. 111913.
[30]
Y. Xiao, F.Q. Yang, Z.H. Gao, et al., Review of mechanical abuse related thermal runaway models of lithium-ion batteries at different scales, J. Energy Storage, 64(2023), art. No. 107145.
[31]
M.L. He, R. Davis, D. Chartouni, et al., Assessment of the first commercial Prussian blue based sodium-ion battery, J. Power Sources, 548(2022), art. No. 232036.
[32]
Singh N, McFarland EW. Levelized cost of energy and sensitivity analysis for the hydrogen–bromine flow battery. J. Power Sources, 2015, 288: 187,
CrossRef Google scholar
[33]
A. Al-Othman, M. Tawalbeh, R. Martis, et al., Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects, Energy Convers. Manage., 253(2022), art. No. 115154.
[34]
Li CC, Wang WX, Zeng XL, Liu CX, Sun R. Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material. Int. J. Miner. Metall. Mater., 2023, 30(4): 772,
CrossRef Google scholar
[35]
Zhong ZX, Wingert MC, Strzalka J, et al.. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale, 2014, 6(14): 8283,
CrossRef Google scholar
[36]
H.L. Liu, X.Y. Liu, J.Y. Yu, Y.T. Liu, and B. Ding, Recent progress in electrospun Al2O3 nanofibers: Component design, structure regulation and performance optimization, Appl. Mater. Today, 29(2022), art. No. 101675.
[37]
L. Yang, L. Zhang, and C.Z. Li, Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites, Compos. Sci. Technol., 200(2020), art. No. 108429.
[38]
Zhang DL, Zha JW, Li WK, et al.. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning. Compos. Sci. Technol., 2018, 156: 1,
CrossRef Google scholar
[39]
Z.Q. Wei, X.D. Kong, J.Z. Cheng, H. Zhou, J.H. Yu, and S.R. Lu, Constructing a “Pearl-Necklace-Like” architecture for enhancing thermal conductivity of composite films by electro-spinning, Compos. Commun., 29(2022), art. No. 101036.
[40]
F. Haghighat, S.A.H. Ravandi, M.N. Esfahany, A. Valipouri, and Z. Zarezade, Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions, Appl. Therm. Eng., 161(2019), art. No. 113924.
[41]
Li CC, Peng XK, He JJ, Chen J. Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage. Int. J. Miner. Metall. Mater., 2023, 30(9): 1835,
CrossRef Google scholar
[42]
Zhang DY, Li CC, Lin NZ, Xie BS, Chen J. Micastabilized polyethylene glycol composite phase change materials for thermal energy storage. Int. J. Miner. Metall. Mater., 2022, 29(1): 168,
CrossRef Google scholar
[43]
Guo YH, Chen YW, Wang EM, Cakmak M. Roll-to-roll continuous manufacturing multifunctional nanocomposites by electric-field-assisted “Z” direction alignment of graphite flakes in poly(dimethylsiloxane). ACS Appl. Mater. Interfaces, 2017, 9(1): 919,
CrossRef Google scholar
[44]
Gu JW, Lv ZY, Wu YL, et al.. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in situ polymerization-electrospinning-hot press method. Composites Part A, 2017, 94: 209,
CrossRef Google scholar
[45]
Zhang B, Kang FY, Tarascon JM, Kim JK. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci., 2016, 76: 319,
CrossRef Google scholar
[46]
S. Wang, H.T. Shi, Y.H. Xia, et al., Electrospun-based nanofibers for sodium and potassium ion storage: Structure design for alkali metal ions with large radius, J. Alloys Compd., 918(2022), art. No. 165680.
[47]
S.K. Zhang, Z.G. Xu, H.H. Duan, et al., N-doped carbon nanofibers with internal cross-linked multiple pores for both ultralong cycling life and high capacity in highly durable K-ion battery anodes, Electrochim. Acta, 337(2020), art. No. 135767.
[48]
Han HX, Chen XY, Qian JF, et al.. Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale, 2019, 11(45): 21999,
CrossRef Google scholar
[49]
Jiang QT, Pang X, Geng ST, et al.. Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance. Appl. Surf. Sci., 2019, 479: 128,
CrossRef Google scholar
[50]
Wu JX, Qin XY, Miao C, et al.. A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon, 2016, 98: 582,
CrossRef Google scholar
[51]
Lin B, Li ZT, Yang Y, et al.. Enhanced dielectric permittivity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method. Compos. Sci. Technol., 2019, 172: 58,
CrossRef Google scholar
[52]
K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, et al., Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation, J. Polym. Res., 24(2017), No. 2, art. No. 27.
[53]
X.X. Guo, S.J. Cheng, W.W. Cai, Y.F. Zhang, and X.A. Zhang, A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties, Mater. Des., 209(2021), art. No. 109936.
[54]
Wang PP, Chen GQ, Li WJ, et al.. Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling. Int. J. Miner. Metall. Mater., 2021, 28(11): 1821,
CrossRef Google scholar
[55]
Khan J, Momin SA, Mariatti M. A review on advanced carbon-based thermal interface materials for electronic devices. Carbon, 2020, 168: 65,
CrossRef Google scholar
[56]
Guo YQ, Xu GJ, Yang XT, et al.. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C, 2018, 6(12): 3004,
CrossRef Google scholar
[57]
Ruan KP, Guo YQ, Tang YS, et al.. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos. Commun., 2018, 10: 68,
CrossRef Google scholar
[58]
Yuan ZZ, Chen W, Shi YK, et al.. Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide. New Carbon Mater., 2021, 36(5): 940,
CrossRef Google scholar
[59]
Y.Q. Guo, L.L. Pan, X.T. Yang, et al., Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology, Composites Part A, 124(2019), art. No. 105484.
[60]
Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci., 2016, 61: 1,
CrossRef Google scholar
[61]
Guo YQ, Yang XT, Ruan KP, et al.. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces, 2019, 11(28): 25465,
CrossRef Google scholar
[62]
Guo YQ, Ruan KP, Yang XT, et al.. Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. J. Mater. Chem. C, 2019, 7(23): 7035,
CrossRef Google scholar
[63]
Yuan KK, Li H, Jin XT, et al.. Electrospun flexible calcium zirconate fiber membrane with excellent thermal stability and alkali resistance. Ceram. Int., 2022, 48(9): 12408,
CrossRef Google scholar
[64]
Yin XW, Cheng LF, Zhang LT, Travitzky N, Greil P. Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev., 2017, 62(3): 117,
CrossRef Google scholar
[65]
A.R. Selvaraj, I.S. Raja, D. Chinnadurai, et al., Electrospun One Dimensional (1D) Pseudocapacitive nanorods embedded carbon nanofiber as positrode and graphene wrapped carbon nanofiber as negatrode for enhanced electrochemical energy storage, J. Energy Storage, 46(2022), art. No. 103731.
[66]
X. Liu, C.M. Wang, Z.Y. Cai, Z.J. Hu, and P. Zhu, Fabrication and characterization of polyacrylonitrile and polyethylene glycol composite nanofibers by electrospinning, J. Energy Storage, 53(2022), art. No. 105171.
[67]
Z. Lule and J. Kim, Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride, Composites Part A, 124(2019), art. No. 105506.
[68]
You JW, Choi HH, Lee YM, et al.. Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties. Composites Part B, 2019, 164: 710,
CrossRef Google scholar
[69]
X.L. Hu, M. Huang, N.Z. Kong, F. Han, R.X. Tan, and Q.Z. Huang, Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by SiC ceramic coating for efficient thermal interface materials, Composites Part B, 227(2021), art. No. 109398.
[70]
Gu JW, Lv ZY, Wu YL, Zhao RX, Tian LD, Zhang QY. Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique. Composites Part A, 2015, 79: 8,
CrossRef Google scholar
[71]
Guerra V, Wan CY, McNally T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci., 2019, 100: 170,
CrossRef Google scholar
[72]
Lin ZY, McNamara A, Liu Y, Moon KS, Wong CP. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos. Sci. Technol., 2014, 90: 123,
CrossRef Google scholar
[73]
Chang CW, Han WQ, Zettl A. Thermal conductivity of B–C–N and BN nanotubes. J. Vac. Sci. Technol. B, 2005, 23(5): 1883,
CrossRef Google scholar
[74]
X.J. Liu and Z.H. Rao, Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials, J. Energy Storage, 32(2020), art. No. 101860.
[75]
X.T. Yang, Y.Q. Guo, Y.X. Han, et al., Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology, Composites Part B, 175(2019), art. No. 107070.
[76]
K. Zhao, S.Y. Wei, M. Cao, et al., Dielectric polyimide composites with enhanced thermal conductivity and excellent electrical insulation properties by constructing 3D oriented heat transfer network, Compos. Sci. Technol., 245(2024), art. No. 110323.
[77]
Y. Zhang, Z.H. Zhao, M.H. Chen, H. Wu, S.Y. Guo, and J.H. Qiu, Constructing interconnected network of MWCNT and BNNS in electrospun TPU films: Achieving excellent thermal conduction yet electrical insulation properties, Carbon, 218(2024), art. No. 118691.
[78]
Chen J, Wei H, Bao H, Jiang PK, Huang XY. Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications. ACS Appl. Mater. Interfaces, 2019, 11(34): 31402,
CrossRef Google scholar
[79]
G. Yang, X.D. Zhang, Y. Shang, et al., Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets, Compos. Sci. Technol., 201(2021), art. No. 108521.
[80]
H. Wang, Y. Zhang, H.T. Niu, et al., An electrospinning–electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films, Composites Part B, 230(2022), art. No. 109505.
[81]
B.K. Yu, J. Fan, J.X. He, et al., Boron nitride nanosheets: Large-scale exfoliation in NaOH–LiCl solution and their highly thermoconductive insulating nanocomposite paper with PI via electrospinning-electrospraying, J. Alloys Compd., 930(2023), art. No. 167303.
[82]
Cui YY, Ke YJ, Liu C, et al.. Thermochromic VO2 for energy-efficient smart windows. Joule, 2018, 2(9): 1707,
CrossRef Google scholar
[83]
Y.J. Ke, J.W. Chen, G.J. Lin, et al., Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond, Adv. Energy Mater., 9(2019), No. 39, art. No. 1902066.
[84]
Wang SF, Liu MS, Kong LB, Long Y, Jiang XC, Yu AB. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties. Prog. Mater. Sci., 2016, 81: 1,
CrossRef Google scholar
[85]
Lu Y, Xiao XD, Cao ZY, Zhan YJ, Cheng HL, Xu G. Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique. Appl. Surf. Sci., 2017, 425: 233,
CrossRef Google scholar
[86]
Lu Y, Xiao XD, Zhan YJ, et al.. Functional transparent nanocomposite film with thermochromic and hydrophobic properties fabricated by electrospinning and hot-pressing approach. Ceram. Int., 2018, 44(1): 1013,
CrossRef Google scholar
[87]
P.P. Che, C.C. Li, B.S. Xie, and N. Wang, Transparent thermochromic VO2/PAN nanocomposite films prepared by electrospinning-hot pressing technique, Therm. Sci. Eng. Prog., 47(2024), art. No. 102334.
[88]
Qi H, Xie AW, Zuo RZ. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: A review. Energy Storage Mater., 2022, 45: 541,
CrossRef Google scholar
[89]
Zhong JJ, Qin L, Li JL, Yang Z, Yang K, Zhang MJ. MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors. Int. J. Miner. Metall. Mater., 2022, 29(5): 1061,
CrossRef Google scholar
[90]
Z.X. Liu, Y.Y. Gu, and L. Bi, Applications of electrospun nanofibers in solid oxide fuel cells–A review, J. Alloys Compd., 937(2023), art. No. 168288.
[91]
Hu J, Zhang SF, Tang BT. Rational design of nanomaterials for high energy density dielectric capacitors via electrospinning. Energy Storage Mater., 2021, 37: 530,
CrossRef Google scholar
[92]
Xu WH, Ding YC, Jiang SH, et al.. Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur. Polym. J., 2014, 59: 129,
CrossRef Google scholar
[93]
Shen YL, Chen LL, Jiang SH, Ding YC, Xu WH, Hou HQ. Electrospun nanofiber reinforced all-organic PVDF/PI tough composites and their dielectric permittivity. Mater. Lett., 2015, 160: 515,
CrossRef Google scholar
[94]
L. Yang, Q.Y. Zhao, K.N. Chen, et al., Simultaneously realizing ultra-high energy density and discharge efficiency in PVDF composites loaded with highly aligned hollow MnO2 microspheres, Composites Part A, 132(2020), art. No. 105820.
[95]
Yang Y, Chen JJ, Li Y, et al.. Preparation and dielectric properties of composites based on PVDF and PVDF-grafted graphene obtained from electrospinning-hot pressing method. J. Macromol. Sci. Part A, 2018, 55(2): 148,
CrossRef Google scholar
[96]
Xu WH, Ding YC, Jiang SH, Chen LL, Liao XJ, Hou HQ. Polyimide/BaTiO3/MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties. Mater. Lett., 2014, 135: 158,
CrossRef Google scholar
[97]
Shen Y, Hu YH, Chen WW, et al.. Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanobiber/polymer nanocomposites. Nano Energy, 2015, 18: 176,
CrossRef Google scholar
[98]
Zhang Y, Zhang CH, Feng Y, et al.. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy, 2019, 56: 138,
CrossRef Google scholar
[99]
J. Wang, Z. Yang, J.Y. Jiang, C.Y. Deng, and K.J. Zhu, Enhanced breakdown strength and energy density of multilayered P(VDF-HFP)/Nd-doped BaTiO3 nanofibers composites, Chem. Eng. J., 427(2022), art. No. 131811.
[100]
Yuan MM, Liu HJ, Ran F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today, 2023, 63: 360,
CrossRef Google scholar
[101]
Huang AM, Ma YC, Peng J, et al.. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience, 2021, 1(2): 141,
CrossRef Google scholar
[102]
Fujita T, Chen H, Wang KT, et al.. Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review. Int. J. Miner. Metall. Mater., 2021, 28(2): 179,
CrossRef Google scholar
[103]
Q. Wei, Y.Y. Wu, S.J. Li, R. Chen, J.H. Ding, and C.Y. Zhang, Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review, Sci. Total Environ., 866(2023), art. No. 161380.
[104]
Zhang SQ, Andreas NS, Li RH, et al.. Mitigating irreversible capacity loss for higher-energy lithium batteries. Energy Storage Mater., 2022, 48: 44,
CrossRef Google scholar
[105]
Wang LF, Geng MM, Ding XN, et al.. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int. J. Miner. Metall. Mater., 2021, 28(4): 538,
CrossRef Google scholar
[106]
Dai XK, Zhang XM, Wen JW, et al.. Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Mater., 2022, 51: 638,
CrossRef Google scholar
[107]
Li JY, Zhang YZ, Shang R, et al.. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Mater., 2021, 43: 143,
CrossRef Google scholar
[108]
Xia Y, Wang QY, Liu YN, et al.. Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery. J. Colloid Interface Sci., 2023, 638: 908,
CrossRef Google scholar
[109]
Ma XJ, Kolla P, Yang RD, et al.. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim. Acta, 2017, 236: 417,
CrossRef Google scholar
[110]
Gong WZ, Zhou JJ, Ruan SL, Shen CY. PPESK/PVDF lithium-ion battery composite separators fabricated by combination of electrospinning and electrospraying techniques. J. Mater. Eng., 2018, 46(3): 1
[111]
Tang CY, He Y, Li L, Liu P, Chen J. Preparation of PAN/SIS composite lithium ion battery membrane by electrospinning. Insul. Mater., 2021, 54(2): 75
[112]
Jin X, Zhao C, Li ZH, Wang WY. Preparation and electrochemical performance of PAN/PVDF/PAN composite membrane for lithium battery. J. Tiangong Univ., 2021, 40(3): 15
[113]
S.J. Jia, Y.H. Liang, and N. Yang, High performance of poly-acrylonitrile/[Mg–Al]-layered double hydroxide composite nanofiber separators for safe lithium-ion batteries, Solid State Ion., 370(2021), art. No. 115735.
[114]
S. Mallick and D. Gayen, Thermal behaviour and thermal runaway propagation in lithium-ion battery systems–A critical review, J. Energy Storage, 62(2023), art. No. 106894.
[115]
H.L. Li, T.T. Feng, Y.F. Liang, and M.Q. Wu, Construction of PMIA@PAN/PVDF-HFP/TiO2 coaxial fibrous separator with enhanced mechanical strength and electrolyte affinity for lithium-ion batteries, Chin. Chem. Lett., 34(2023), No. 12, art. No. 108350.
[116]
Q.S. Fu, W. Zhang, I.P. Muhammad, et al., Coaxially electrospun PAN/HCNFs@PVDF/UiO-66 composite separator with high strength and thermal stability for lithium-ion battery, Microporous Mesoporous Mater., 311(2021), art. No. 110724.
[117]
O.J. Sanumi, P.G. Ndungu, and B.O. Oboirien, Challenges of 3D printing in LIB electrodes: Emphasis on material-design properties, and performance of 3D printed Si-based LIB electrodes, J. Power Sources, 543(2022), art. No. 231840.
[118]
Kim SJ, Kim MC, Han SB, et al.. 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries. J. Ind. Eng. Chem., 2017, 49: 105,
CrossRef Google scholar
[119]
L.Y. Yang, J.H. Cao, B.R. Cai, T. Liang, and D.Y. Wu, Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries, Electrochim. Acta, 382(2021), art. No. 138346.
[120]
Aminudin MA, Kamarudin SK, Lim BH, Majilan EH, Masdar MS, Shaari N. An overview: Current progress on hydrogen fuel cell vehicles. Int. J. Hydrogen Energy, 2023, 48(11): 4371,
CrossRef Google scholar
[121]
Y. Leng, P.W. Ming, D.J. Yang, and C.M. Zhang, Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451(2020), art. No. 227783.
[122]
Eskitoros-Togay M, Bulbul YE, Cınar ZK, Sahin A, Dilsiz N. Fabrication of PVP/sulfonated PES electrospun membranes decorated by sulfonated halloysite nanotubes via electrospinning method and enhanced performance of proton exchange membrane fuel cells. Int. J. Hydrogen Energy, 2023, 48(1): 280,
CrossRef Google scholar
[123]
Wei M, Jiang M, Liu XB, Wang M, Mu SC. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance. J. Power Sources, 2016, 327: 384,
CrossRef Google scholar
[124]
Liu SQ, Yuan S, Liang YW, et al.. Engineering the catalyst layers towards enhanced local oxygen transport of Low-Pt proton exchange membrane fuel cells: Materials, designs, and methods. Int. J. Hydrogen Energy, 2023, 48(11): 4389,
CrossRef Google scholar
[125]
S. Kabir, S. Medina, G.X. Wang, G. Bender, S. Pylypenko, and K.C. Neyerlin, Improving the bulk gas transport of Fe–N–C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications, Nano Energy, 73(2020), art. No. 104791.
[126]
Powers D, Wycisk R, Pintauro PN. Electrospun tri-layer membranes for H2/Air fuel cells. J. Membr. Sci., 2019, 573: 107,
CrossRef Google scholar
[127]
Karimi MB, Mohammadi F, Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. Int. J. Hydrogen Energy, 2019, 44(54): 28919,
CrossRef Google scholar
[128]
M. Oroujzadeh, M. Etesami, and S. Mehdipour-Ataei, Poly(ether ketone) composite membranes by electrospinning for fuel cell applications, J. Power Sources, 434(2019), art. No. 226733.
[129]
Mojarrad NR, Iskandarani B, Taşdemir A, Yürüm A, Gürsel SA, Kaplan BY. Nanofiber based hybrid sulfonated silica/P(VDF-TrFE) membranes for PEM fuel cells. Int. J. Hydrogen Energy, 2021, 46(25): 13583,
CrossRef Google scholar
[130]
S.M. Abu, M.A. Hannan, M.S.H. Lipu, et al., State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions, J. Cleaner Prod., 394(2023), art. No. 136246.
[131]
Chen FH, Wu YW, Zhang HH, et al.. The modulation of the discharge plateau of benzoquinone for sodium-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1675,
CrossRef Google scholar
[132]
Hafiz NSM, Singla G, Jha PK. Next generation sodium-ion battery: A replacement of lithium. Mater. Today Proc., 2022
[133]
Wang Y, Liu YK, Liu YC, et al.. Recent advances in electrospun electrode materials for sodium-ion batteries. J. Energy Chem., 2021, 54: 225,
CrossRef Google scholar
[134]
Patel M, Mishra K, Banerjee R, Chaudhari J, Kanchan DK, Kumar D. Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. J. Energy Chem., 2023, 81: 221,
CrossRef Google scholar
[135]
B. He, K.B. Yin, W.B. Gong, et al., NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries, Nano Energy, 82(2021), art. No. 105764.
[136]
S. Kim, M.S. Kwon, J.H. Han, et al., Poly(ethylene-co-vinyl acetate)/polyimide/poly(ethylene-co-vinyl acetate) tri-layer porous separator with high conductivity and tailored thermal shutdown function for application in sodium-ion batteries, J. Power Sources, 482(2021), art. No. 228907.
[137]
Cho KT, Ridgway P, Weber AZ, Haussener S, Battaglia V, Srinivasan V. High performance hydrogen/bromine redox flow battery for grid-scale energy storage. J. Electrochem. Soc., 2012, 159(11): A1806,
CrossRef Google scholar
[138]
K. Saadi, S.S. Hardisty, Z. Tatus-Portnoy, and D. Zitoun, Influence of loading, metallic surface state and surface protection in precious group metal hydrogen electrocatalyst for H2/Br2 redox-flow batteries, J. Power Sources, 536(2022), art. No. 231494.
[139]
S. Abbasi, A. Forner-Cuenca, W. Kout, K. Nijmeijer, and Z. Borneman, Low-cost wire-electrospun sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membranes for hydrogen-bromine flow batteries, J. Membr. Sci., 628(2021), art. No. 119258.
[140]
Y.A. Hugo, W. Kout, A. Forner-Cuenca, Z. Borneman, and K. Nijmeijer, Wire based electrospun composite short side chain perfluorosulfonic acid/polyvinylidene fluoride membranes for hydrogen-bromine flow batteries, J. Power Sources, 497(2021), art. No. 229812.

Accesses

Citations

Detail

Sections
Recommended

/