Review of Sc microalloying effects in Al–Cu alloys

Shenghua Wu , Chong Yang , Peng Zhang , Hang Xue , Yihan Gao , Yuqing Wang , Ruihong Wang , Jinyu Zhang , Gang Liu , Jun Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 1098 -1114.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 1098 -1114. DOI: 10.1007/s12613-024-2841-8
Invited Review

Review of Sc microalloying effects in Al–Cu alloys

Author information +
History +
PDF

Abstract

Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties, and the microalloying strategy is the most frequently adopted method for such a purpose. In this paper, recent advances in length-scale-dependent scandium (Sc) microalloying effects in Al–Cu model alloys are reviewed. In coarse-grained Al–Cu alloys, the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al2Cu/matrix interface that reduces interfacial energy contribute significantly to θ′ precipitation. By grain size refinement to the fine/ultrafine -grained scale, the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries, promoting the desired intragranular θ′ precipitation. At nanocrystalline scale, the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu, Sc, vacancy)-rich atomic complexes with high thermal stability, outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation. This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys.

Keywords

aluminum alloy / microalloying effect / length-scale dependence / precipitation / mechanical properties

Cite this article

Download citation ▾
Shenghua Wu, Chong Yang, Peng Zhang, Hang Xue, Yihan Gao, Yuqing Wang, Ruihong Wang, Jinyu Zhang, Gang Liu, Jun Sun. Review of Sc microalloying effects in Al–Cu alloys. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(5): 1098-1114 DOI:10.1007/s12613-024-2841-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Martin JW. Precipitation Hardening, 1998, 2nd ed. Woburn, MA, Butterworth-Heinemann.

[2]

A. Deschamps and C.R. Hutchinson, Precipitation kinetics in metallic alloys: Experiments and modeling, Acta Mater., 220(2021), art. No. 117338.

[3]

Porter DA, Easterling KE. Phase Transformations in Metals and Alloys, 1992, 2nd ed. Boca Raton, CRC Press

[4]

L. Bourgeois, Y. Zhang, Z.Z. Zhang, Y.Q. Chen, and N.V. Medhekar, Transforming solid-state precipitates via excess vacancies, Nat. Commun., 11(2020), No. 1, art. No. 1248.

[5]

Chen YQ, Zhang ZZ, Chen Z, et al. The enhanced theta-prime (θ′) precipitation in an Al–Cu alloy with trace Au additions. Acta Mater., 2017, 125, 340.

[6]

Russell KC. Nucleation in solids: The induction and steady state effects. Adv. Colloid Interface Sci., 1980, 13(3–4): 205.

[7]

Zener C. Theory of growth of spherical precipitates from solid solution. J. Appl. Phys., 1949, 20(10): 950.

[8]

Boyd JD, Nicholson RB. A calorimetric determination of precipitate interfacial energies in two Al–Cu alloys. Acta Metall., 1971, 19(10): 1101.

[9]

Liu G, Zhang GJ, Ding XD, Sun J, Chen KH. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates. Mater. Sci. Eng. A, 2003, 344(1–2): 113.

[10]

Liu G, Sun J, Nan CW, Chen KH. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater., 2005, 53(12): 3459.

[11]

Grong Ø, Shercliff HR. Microstructural modelling in metals processing. Prog. Mater. Sci., 2002, 47(2): 163.

[12]

Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater., 2004, 52(15): 4589.

[13]

Geng YX, Tang H, Xu JH, et al. Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting. Int. J. Miner. Metall. Mater., 2022, 29(9): 1770.

[14]

Radmilovic V, Ophus C, Marquis EA, et al. Highly monodisperse core-shell particles created by solid-state reactions. Nat. Mater., 2011, 10(9): 710.

[15]

Yuan SP, Liu G, Wang RH, et al. Coupling effect of multiple precipitates on the ductile fracture of aged Al–Mg–Si alloys. Scripta Mater., 2007, 57(9): 865.

[16]

Liu G, Zhang G, Wang R, Hu W, Sun J, Chen K. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys. Acta Mater., 2007, 55(1): 273.

[17]

Starink MJ, Wang SC. A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater., 2003, 51(17): 5131.

[18]

Myhr OR, Grong Ø, Andersen SJ. Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater., 2001, 49(1): 65.

[19]

Ringer SP, Hono K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact, 2000, 44(1–2): 101.

[20]

He LZ, Cao YH, Zhou YZ, Cui JZ. Effects of Ag addition on the microstructures and properties of Al–Mg–Si–Cu alloys. Int. J. Miner. Metall. Mater., 2018, 25(1): 62.

[21]

Zhang JY, Gao YH, Yang C, et al. Microalloying Al alloys with Sc: A review. Rare Met., 2020, 39(6): 636.

[22]

Ganjehfard K, Taghiabadi R, Noghani MT, Ghoncheh MH. Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si. Int. J. Miner. Metall. Mater., 2021, 28(4): 718.

[23]

Hardy HK. The ageing characteristics of ternary aluminium–copper alloys with cadmium, indium, or tin. J. Inst. Met., 1952, 80, 483.

[24]

Bourgeois L, Dwyer C, Weyland M, Nie JF, Muddle BC. The magic thicknesses of θ′ precipitates in Sn-microalloyed Al–Cu. Acta Mater., 2012, 60(2): 633.

[25]

Bourgeois L, Nie JF, Muddle BC. Assisted nucleation of θ′ phase in Al–Cu-Sn: The modified crystallography of tin precipitates. Philos. Mag., 2005, 85(29): 3487.

[26]

Homma T, Moody MP, Saxey DW, Ringer SP. Effect of Sn addition in preprecipitation stage in Al–Cu alloys: A correlative transmission electron microscopy and atom probe tomography study. Metall. Mater. Trans. A, 2012, 43(7): 2192.

[27]

Mitlin D, Morris JW, Radmilovic V, Dahmen U. Precipitation and aging in Al–Si–Ge–Cu. Metall. Mater. Trans. A, 2001, 32(1): 197.

[28]

Sato T, Hirosawa S, Hirose K, Maeguchi T. Roles of microalloying elements on the cluster formation in the initial stage of phase decomposition of Al-based alloys. Metall. Mater. Trans. A, 2003, 34(12): 2745.

[29]

Biswas A, Siegel DJ, Wolverton C, Seidman DN. Precipitates in Al–Cu alloys revisited: Atom- probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater., 2011, 59(15): 6187.

[30]

A. Biswas, D.J. Siegel, and D.N. Seidman, Simultaneous segregation at coherent and semicoherent heterophase interfaces, Phys. Rev. Lett., 105(2010), No. 7, art. No. 076102.

[31]

Ringer SP, Hono K, Sakurai T. The effect of trace additions of Sn on precipitation in Al–Cu alloys: An atom probe field ion microscopy study. Metall. Mater. Trans. A, 1995, 26(9): 2207.

[32]

Mitlin D, Radmilovic V, Dahmen U, Morris JW. On the influence of Si-Ge additions on the aging response of Al–Cu. Metall. Mater. Trans. A, 2003, 34(3): 735.

[33]

M.P. Moody, A.V. Ceguerra, A.J. Breen, et al., Atomically resolved tomography to directly inform simulations for structure-property relationships, Nat. Commun., 5(2014), art. No. 5501.

[34]

R. Hu, S.B. Jin, and G. Sha, Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis, Prog. Mater. Sci., 123(2022), art. No. 100854.

[35]

Pogatscher S, Antrekowitsch H, Leitner H, Ebner T, Uggowitzer PJ. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys. Acta Mater., 2011, 59(9): 3352.

[36]

S.Q. Zhu, H.C. Shih, X.Y. Cui, C.Y. Yu, and S.P. Ringer, Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy, Acta Mater., 203(2021), art. No. 116455.

[37]

X.Z. Wang, D.D. Zhao, Y.J. Xu, and Y.J. Li, Modelling the spatial evolution of excess vacancies and its influence on age hardening behaviors in multicomponent aluminium alloys, Acta Mater., 264(2024), art. No. 1149552.

[38]

Sun WW, Zhu YM, Marceau R, et al. Precipitaton strengthening of aluminum alloys by room-temperature cyclic plasticity. Science, 2019, 363(6430): 972.

[39]

S.H. Wu, H.S. Soreide, B. Chen, et al., Freezing solute atoms in nanograined aluminum alloys via high-density vacancies, Nat. Commun., 13(2022), No. 1, art. No. 3495.

[40]

S. Pogatscher, H. Antrekowitsch, M. Werinos, et al., Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys, Phys. Rev. Lett., 112(2014), No. 22, art. No. 225701.

[41]

Marceau RKW, de Vaucorbeil A, Sha G, Ringer SP, Poole WJ. Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling. Acta Mater., 2013, 61(19): 7285.

[42]

P. Dumitraschkewitz, P.J. Uggowitzer, S.S.A. Gerstl, J.F. Löffler, and S. Pogatscher, Size-dependent diffusion controls natural aging in aluminium alloys, Nat. Commun., 10(2019), No. 1, art. No. 4746.

[43]

Xu W, Zhang B, Li XY, Lu K. Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al-Mg alloys. Science, 2021, 373(6555): 683.

[44]

W. Xu, Y.M. Zhong, X.Y. Li, and K. Lu, Stabilizing supersaturation with extreme grain refinement in spinodal aluminum alloys, Adv. Mater., (2023), art. No. 2303650.

[45]

Unwin PNT, Lorimer GW, Nicholson RB. The origin of the grain boundary precipitate free zone. Acta Metall., 1969, 17(11): 1363.

[46]

Jiang H, Faulkner RG. Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys—I. The model. Acta Mater., 1996, 44(5): 1857.

[47]

Ovid’ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci., 2018, 94, 462.

[48]

Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci., 2008, 53(6): 893.

[49]

Sabirov I, Murashkin MY, Valiev RZ. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng. A, 2013, 560, 1.

[50]

Wang PJ, Ma LW, Cheng XQ, Li XG. Influence of grain refinement on the corrosion behavior of metallic materials: A review. Int. J. Miner. Metall. Mater., 2021, 28(7): 1112.

[51]

Namdar M, Jahromi SAJ. Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy. Int. J. Miner. Metall. Mater., 2015, 22(3): 285.

[52]

Romero-Reséndiz L, Flores-Rivera A, Figueroa IA, et al. Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy. Int. J. Miner. Metall. Mater., 2020, 27(6): 801.

[53]

Jiang L, Li JK, Liu G, et al. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition. Mater. Sci. Eng. A, 2015, 637, 139.

[54]

Huang Y, Robson JD, Prangnell PB. The Formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy. Acta Mater., 2010, 58(5): 1643.

[55]

Deschamps A, De Geuser F, Horita Z, Lee S, Renou G. Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy. Acta Mater., 2014, 66, 105.

[56]

Hu T, Ma K, Topping TD, Schoenung JM, Lavernia EJ. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater., 2013, 61(6): 2163.

[57]

Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG. Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy. Acta Mater., 2009, 57(10): 3123.

[58]

L. Jiang, J.K. Li, P.M. Cheng, et al., Microalloying ultrafine grained Al alloys with enhanced ductility, Sci. Rep., 4(2014), art. No. 3605.

[59]

Røyset J, Ryum N. Scandium in aluminium alloys. Int. Mater. Rev., 2005, 50(1): 19.

[60]

Liu T, He CN, Li G, Meng X, Shi CS, Zhao NQ. Microstructural evolution in Al–Zn–Mg–Cu–Sc–Zr alloys during short-time homogenization. Int. J. Miner. Metall. Mater., 2015, 22(5): 516.

[61]

Marquis EA, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater., 2001, 49(11): 1909.

[62]

Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater., 2002, 50(16): 4021.

[63]

Wadsworth J, Nieh TG, Stephens JJ. Recent advances in aerospace refractory metal alloys. Int. Mater. Rev., 1988, 33(1): 131.

[64]

Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater., 2010, 58(15): 5184.

[65]

Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater., 2003, 51(16): 4803.

[66]

Booth-Morrison C, Dunand DC, Seidman DN. Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater., 2011, 59(18): 7029.

[67]

van Dalen ME, Seidman DN, Dunand DC. Creep- and coarsening properties of Al-0.06at.% Sc–0.06at.% Ti at 300–450°C. Acta Mater., 2008, 56(16): 4369.

[68]

Li RD, Wang MB, Li ZM, Cao P, Yuan TC, Zhu HB. Developing a high-strength Al–Mg–Si–Sc–Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms. Acta Mater., 2020, 193, 83.

[69]

Jia QB, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al–Mn–Sc alloy: Alloy design and strengthening mechanisms. Acta Mater., 2019, 171, 108.

[70]

Marquis EA, Seidman DN, Asta M, Woodward C. Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: Experiments and computations. Acta Mater., 2006, 54(1): 119.

[71]

E.A. Marquis, D.N. Seidman, M. Asta, C. Woodward, and V. Ozoliņs, Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: Experiments and computations, Phys. Rev. Lett., 91(2003), No. 3, art. No. 036101.

[72]

Deng Y, Yin ZM, Zhao K, Duan JQ, Hu J, He ZB. Effects of Sc and Zr microalloying additions and aging time at 120°C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros. Sci., 2012, 65, 288.

[73]

Deng Y, Ye R, Xu GF, et al. Corrosion behaviour and mechanism of new aerospace Al–Zn–Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1−x nanoparticles. Corros. Sci., 2015, 90, 359.

[74]

Liu CY, Teng GB, Ma ZY, Wei LL, Zhang B, Chen Y. Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy. Int. J. Miner. Metall. Mater., 2019, 26(12): 1559.

[75]

Bai S, Yi XL, Liu GH, Liu ZY, Wang J, Zhao JG. Effect of Sc addition on the microstructures and age-hardening behavior of an Al–Cu–Mg–Ag alloy. Mater. Sci. Eng. A, 2019, 756, 258.

[76]

Jiang SY, Wang RH. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J. Mater. Sci. Technol., 2019, 35(7): 1354.

[77]

Chen BA, Pan L, Wang RH, et al. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition. Mater. Sci. Eng. A, 2011, 530, 607.

[78]

Chen BA, Liu G, Wang RH, et al. Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys. Acta Mater., 2013, 61(5): 1676.

[79]

Jiang L, Li JK, Cheng PM, et al. Experiment and modeling of ultrafast precipitation in an ultrafine-grained Al–Cu–Sc alloy. Mater. Sci. Eng. A, 2014, 607, 596.

[80]

Wu SH, Zhang P, Shao D, et al. Grain size-dependent Sc microalloying effect on the yield strength-pitting corrosion correlation in Al–Cu alloys. Mater. Sci. Eng. A, 2018, 721, 200.

[81]

Gao YH, Yang C, Zhang JY, et al. Stabilizing nanoprecipitates in Al–Cu alloys for creep resistance at 300°C. Mater. Res. Lett., 2019, 7(1): 18.

[82]

S. Wu, H. Xue, C. Yang, et al., Hierarchical structure in Al–Cu alloys to promote strength/ductility synergy, Scripta Mater., 202(2021), art. No. 113996.

[83]

Nie JF. Laughlin DE, Hono K. Physical metallurgy of light alloys. Physical Metallurgy, 2014, 5th ed. Amsterdam, Elsevier, 2009.

[84]

Rosalie JM, Bourgeois L. Silver segregation to θ′ (Al2Cu)–Al interfaces in Al–Cu-Ag alloys. Acta Mater., 2012, 60(17): 6033.

[85]

Shin D, Shyam A, Lee S, Yamamoto Y, Haynes JA. Solute segregation at the Al/θ′-Al2Cu interface in Al–Cu alloys. Acta Mater., 2017, 141, 327.

[86]

Zheng YH, Liu YX, Wilson N, et al. Solute segregation induced sandwich structure in Al–Cu (–Au) alloys. Acta Mater., 2020, 184, 17.

[87]

Poplawsky JD, Milligan BK, Allard LF, et al. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al–Cu alloys. Acta Mater., 2020, 194, 577.

[88]

Norman AF, Prangnell PB, McEwen RS. The solidification behaviour of dilute aluminium-scandium alloys. Acta Mater., 1998, 46(16): 5715.

[89]

Jones MJ, Humphreys FJ. Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Mater., 2003, 51(8): 2149.

[90]

Ferry M, Burhan N. Structural and kinetic aspects of continuous grain coarsening in a fine-grained Al-0.3Sc alloy. Acta Mater., 2007, 55(10): 3479.

[91]

Teixeira JDC, Cram DG, Bourgeois L, Bastow TJ, Hill AJ, Hutchinson CR. On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates. Acta Mater., 2008, 56(20): 6109.

[92]

Bourgeois L, Dwyer C, Weyland M, Nie JF, Muddle BC. Structure and energetics of the coherent interface between the θ′ precipitate phase and aluminium in Al–Cu. Acta Mater., 2011, 59(18): 7043.

[93]

L. Bourgeois, N.V. Medhekar, A.E. Smith, M. Weyland, J.F. Nie, and C. Dwyer, Efficient atomic-scale kinetics through a complex heterophase interface, Phys. Rev. Lett., 111(2013), No. 4, art. No. 046102.

[94]

Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al–Cu alloys with minor Sc addition. Acta Mater., 2016, 119, 68.

[95]

Zhang DL, Wang J, Kong Y, Zou Y, Du Y. First-principles investigation on stability and electronic structure of Sc-doped θ′/Al interface in Al–Cu alloys. Trans. Nonferrous Met. Soc. China, 2021, 31(11): 3342.

[96]

Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys - A review. Int. J. Mater. Res., 2006, 97(3): 246.

[97]

Jun S. Strength for decohesion of spheroidal carbide particle-matrix interface. Int. J. Fract., 1990, 44(4): R51.

[98]

Goods SH, Brown LM. Overview No. 1: The nucleation of cavities by plastic deformation. Acta Metall., 1979, 27(1): 1.

[99]

Brown LM, Stobbs WM. The work-hardening of copper-silica v. equilibrium plastic relaxation by secondary dislocations. Philos. Mag., 1976, 34(3): 351.

[100]

Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater., 2010, 58(14): 4814.

[101]

Hutchinson CR, Fan X, Pennycook SJ, Shiflet GJ. On the origin of the high coarsening resistance of Q plates in Al–Cu–Mg–Ag Alloys. Acta Mater., 2001, 49(14): 2827.

[102]

Gao YH, Guan PF, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance. Mater. Res. Lett., 2020, 8(12): 446.

[103]

A. Shyam, S. Roy, D. Shin, et al., Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation, Mater. Sci. Eng. A, 765(2019), art. No. 138279.

[104]

Y.H. Gao, L.F. Cao, C. Yang, J.Y. Zhang, G. Liu, and J. Sun, Co-stabilization of θ′-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al–Cu alloy with enhanced creep resistance, Mater. Today Nano, 6(2019), art. No. 100035.

[105]

Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al–Cu–Sc alloy by isochronal aging, Mater. Sci. Eng. A, 795(2020), art. No. 139943.

[106]

Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater., 2004, 3(8): 511.

[107]

Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., 2000, 45(2): 103.

[108]

Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater., 2013, 61(3): 782.

[109]

Tiamiyu AA, Pang EL, Chen X, LeBeau JM, Nelson KA, Schuh CA. Nanotwinning-assisted dynamic recrystallization at high strains and strain rates. Nat. Mater., 2022, 21(7): 786.

[110]

Ghosh KS, Gao N, Starink MJ. Characterisation of high pressure torsion processed 7150 Al–Zn–Mg–Cu alloy. Mater. Sci. Eng. A, 2012, 552, 164.

[111]

Brunner JG, May J, Höppel HW, Göken M, Virtanen S. Localized corrosion of ultrafine-grained Al–Mg model alloys. Electrochim. Acta, 2010, 55(6): 1966.

[112]

Prados EF, Sordi VL, Ferrante M. The effect of Al2Cu precipitates on the microstructural evolution, tensile strength, ductility and work-hardening behaviour of a Al–4wt.% Cu alloy processed by equal-channel angular pressing. Acta Mater., 2013, 61(1): 115.

[113]

Murayama M, Horita Z, Hono K. Microstructure of two-phase Al–1.7 at% Cu alloy deformed by equal-channel angular pressing. Acta Mater., 2001, 49(1): 21.

[114]

Jia HL, Bjørge R, Cao LF, Song H, Marthinsen K, Li YJ. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al–5Cu alloy. Acta Mater., 2018, 155, 199.

[115]

Hockauf K, Meyer LW, Hockauf M, Halle T. Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment. J. Mater. Sci., 2010, 45(17): 4754.

[116]

Wolverton C. Solute-vacancy binding in aluminum. Acta Mater., 2007, 55(17): 5867.

[117]

Peng J, Bahl S, Shyam A, Haynes JA, Shin D. Solute-vacancy clustering in aluminum. Acta Mater., 2020, 196, 747.

[118]

Kairy SK, Rometsch PA, Diao K, Nie JF, Davies CHJ, Birbilis N. Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure. Electrochim. Acta, 2016, 190, 92.

[119]

Ralston KD, Birbilis N, Weyland M, Hutchinson CR. The effect of precipitate size on the yield strength-pitting corrosion correlation in Al–Cu–Mg alloys. Acta Mater., 2010, 58(18): 5941.

[120]

Ashby MF. Overview No. 80: On the engineering properties of materials. Acta Metall., 1989, 37(5): 1273.

[121]

Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today, 2017, 20(6): 323.

[122]

Wang YM, Chen MW, Zhou FH, Ma E. High tensile ductility in a nanostructured metal. Nature, 2002, 419(6910): 912.

[123]

Zha M, Li YJ, Mathiesen RH, Bjørge R, Roven HJ. Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater., 2015, 84, 42.

[124]

Huang Y, Langdon TG. Advances in ultrafine-grained materials. Mater. Today, 2013, 16(3): 85.

[125]

Sha G, Tugcu K, Liao XZ, et al. Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Mater., 2014, 63, 169.

[126]

Zhang YD, Jin SB, Trimby PW, et al. Dynamic precipitation, segregation and strengthening of an Al–Zn–Mg–Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater., 2019, 162, 19.

[127]

Z.Z. Song, R.M. Niu, X.Y. Cui, et al., Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al–Zn alloy, Scripta Mater., 210(2022), art. No. 114423.

[128]

Z.Z. Song, R.M. Niu, X.Y. Cui, et al., Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys, Acta Mater., 246(2023), art. No. 118671.

[129]

A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, and K. Edalati, Developing age-hardenable Al–Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity, Acta Mater., 203(2021), art. No. 116503.

[130]

Xu W, Liu XC, Lu K. Strain-induced microstructure refinement in pure Al below 100nm in size. Acta Mater., 2018, 152, 138.

[131]

Li XY, Jin ZH, Zhou X, Lu K. Constrained minimalinterface structures in polycrystalline copper with extremely fine grains. Science, 2020, 370(6518): 831.

[132]

Xu W, Liu XC, Li XY, Lu K. Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy. Acta Mater., 2020, 182, 207.

[133]

Su LH, Lu C, He LZ, et al. Study of vacancy-type defects by positron annihilation in ultrafine-grained aluminum severely deformed at room and cryogenic temperatures. Acta Mater., 2012, 60(10): 4218.

[134]

J. Čížek, I. Procházka, M. Cieslar, et al., Thermal stability of ultrafine grained copper, Phys. Rev. B, 65(2002), No. 9, art. No. 094106.

[135]

Sauvage X, Enikeev N, Valiev R, Nasedkina Y, Murashkin M. Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy. Acta Mater., 2014, 72, 125.

[136]

Fischer FD, Svoboda J, Appel F, Kozeschnik E. Modeling of excess vacancy annihilation at different types of sinks. Acta Mater., 2011, 59(9): 3463.

[137]

Zhang JY, Lei S, Liu Y, et al. Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater., 2012, 60, 1610.

[138]

Kubin LP, Estrin Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect. Acta Metall. Mater., 1990, 38(5): 697.

[139]

Kubin LP, Estrin Y. The critical conditions for jerky flow. Discussion and application to CuMn solid solutions. Phys. Status Solidi B, 1992, 172(1): 173.

[140]

Chen XF, Wang Q, Cheng ZY, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature, 2021, 592(7856): 712.

[141]

Häussler D, Bartsch M, Messerschmidt U, Reppich B. HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754. Acta Mater., 2001, 49(18): 3647.

[142]

J. Mola, G.Q. Luan, Q.L. Huang, C. Ullrich, O. Volkova, and Y. Estrin, Dynamic strain aging mechanisms in a metastable austenitic stainless steel, Acta Mater., 212(2021), art. No. 116888.

[143]

Zhang RP, Zhao ST, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 2020, 581(7808): 283.

[144]

Jiang SH, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544(7651): 460.

[145]

Du JL, Jiang SH, Cao PP, et al. Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices. Nat. Mater., 2023, 22(4): 442.

AI Summary AI Mindmap
PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/