Review of Sc microalloying effects in Al–Cu alloys
Shenghua Wu , Chong Yang , Peng Zhang , Hang Xue , Yihan Gao , Yuqing Wang , Ruihong Wang , Jinyu Zhang , Gang Liu , Jun Sun
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 1098 -1114.
Review of Sc microalloying effects in Al–Cu alloys
Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties, and the microalloying strategy is the most frequently adopted method for such a purpose. In this paper, recent advances in length-scale-dependent scandium (Sc) microalloying effects in Al–Cu model alloys are reviewed. In coarse-grained Al–Cu alloys, the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al2Cu/matrix interface that reduces interfacial energy contribute significantly to θ′ precipitation. By grain size refinement to the fine/ultrafine -grained scale, the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries, promoting the desired intragranular θ′ precipitation. At nanocrystalline scale, the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu, Sc, vacancy)-rich atomic complexes with high thermal stability, outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation. This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys.
aluminum alloy / microalloying effect / length-scale dependence / precipitation / mechanical properties
| [1] |
|
| [2] |
A. Deschamps and C.R. Hutchinson, Precipitation kinetics in metallic alloys: Experiments and modeling, Acta Mater., 220(2021), art. No. 117338. |
| [3] |
|
| [4] |
L. Bourgeois, Y. Zhang, Z.Z. Zhang, Y.Q. Chen, and N.V. Medhekar, Transforming solid-state precipitates via excess vacancies, Nat. Commun., 11(2020), No. 1, art. No. 1248. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
A. Biswas, D.J. Siegel, and D.N. Seidman, Simultaneous segregation at coherent and semicoherent heterophase interfaces, Phys. Rev. Lett., 105(2010), No. 7, art. No. 076102. |
| [31] |
|
| [32] |
|
| [33] |
M.P. Moody, A.V. Ceguerra, A.J. Breen, et al., Atomically resolved tomography to directly inform simulations for structure-property relationships, Nat. Commun., 5(2014), art. No. 5501. |
| [34] |
R. Hu, S.B. Jin, and G. Sha, Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis, Prog. Mater. Sci., 123(2022), art. No. 100854. |
| [35] |
|
| [36] |
S.Q. Zhu, H.C. Shih, X.Y. Cui, C.Y. Yu, and S.P. Ringer, Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy, Acta Mater., 203(2021), art. No. 116455. |
| [37] |
X.Z. Wang, D.D. Zhao, Y.J. Xu, and Y.J. Li, Modelling the spatial evolution of excess vacancies and its influence on age hardening behaviors in multicomponent aluminium alloys, Acta Mater., 264(2024), art. No. 1149552. |
| [38] |
|
| [39] |
S.H. Wu, H.S. Soreide, B. Chen, et al., Freezing solute atoms in nanograined aluminum alloys via high-density vacancies, Nat. Commun., 13(2022), No. 1, art. No. 3495. |
| [40] |
S. Pogatscher, H. Antrekowitsch, M. Werinos, et al., Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys, Phys. Rev. Lett., 112(2014), No. 22, art. No. 225701. |
| [41] |
|
| [42] |
P. Dumitraschkewitz, P.J. Uggowitzer, S.S.A. Gerstl, J.F. Löffler, and S. Pogatscher, Size-dependent diffusion controls natural aging in aluminium alloys, Nat. Commun., 10(2019), No. 1, art. No. 4746. |
| [43] |
|
| [44] |
W. Xu, Y.M. Zhong, X.Y. Li, and K. Lu, Stabilizing supersaturation with extreme grain refinement in spinodal aluminum alloys, Adv. Mater., (2023), art. No. 2303650. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
L. Jiang, J.K. Li, P.M. Cheng, et al., Microalloying ultrafine grained Al alloys with enhanced ductility, Sci. Rep., 4(2014), art. No. 3605. |
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
E.A. Marquis, D.N. Seidman, M. Asta, C. Woodward, and V. Ozoliņs, Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: Experiments and computations, Phys. Rev. Lett., 91(2003), No. 3, art. No. 036101. |
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
S. Wu, H. Xue, C. Yang, et al., Hierarchical structure in Al–Cu alloys to promote strength/ductility synergy, Scripta Mater., 202(2021), art. No. 113996. |
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
L. Bourgeois, N.V. Medhekar, A.E. Smith, M. Weyland, J.F. Nie, and C. Dwyer, Efficient atomic-scale kinetics through a complex heterophase interface, Phys. Rev. Lett., 111(2013), No. 4, art. No. 046102. |
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
A. Shyam, S. Roy, D. Shin, et al., Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation, Mater. Sci. Eng. A, 765(2019), art. No. 138279. |
| [104] |
Y.H. Gao, L.F. Cao, C. Yang, J.Y. Zhang, G. Liu, and J. Sun, Co-stabilization of θ′-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al–Cu alloy with enhanced creep resistance, Mater. Today Nano, 6(2019), art. No. 100035. |
| [105] |
Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al–Cu–Sc alloy by isochronal aging, Mater. Sci. Eng. A, 795(2020), art. No. 139943. |
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
Z.Z. Song, R.M. Niu, X.Y. Cui, et al., Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al–Zn alloy, Scripta Mater., 210(2022), art. No. 114423. |
| [128] |
Z.Z. Song, R.M. Niu, X.Y. Cui, et al., Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys, Acta Mater., 246(2023), art. No. 118671. |
| [129] |
A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, and K. Edalati, Developing age-hardenable Al–Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity, Acta Mater., 203(2021), art. No. 116503. |
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
J. Čížek, I. Procházka, M. Cieslar, et al., Thermal stability of ultrafine grained copper, Phys. Rev. B, 65(2002), No. 9, art. No. 094106. |
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
J. Mola, G.Q. Luan, Q.L. Huang, C. Ullrich, O. Volkova, and Y. Estrin, Dynamic strain aging mechanisms in a metastable austenitic stainless steel, Acta Mater., 212(2021), art. No. 116888. |
| [143] |
|
| [144] |
|
| [145] |
|
/
| 〈 |
|
〉 |