Analysis of explosion wave interactions and rock breaking effects during dual initiation
Renshu Yang, Jinjing Zuo, Liwei Ma, Yong Zhao, Zhen Liu, Quanmin Xie
Analysis of explosion wave interactions and rock breaking effects during dual initiation
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction of the explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shock wave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shock wave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collision location, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wave front pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collision area is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°. Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted. Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosion wave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks were generated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracture cracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wall compression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposed and nonsuperimposed areas, respectively.
blasting / shock wave collision / high-speed schlieren system / crack fracture characteristic / explosion wave
[[1]] |
Z.D. Leng, J.S. Sun, W.B. Lu, et al., Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation, Comput. Geotech., 129(2021), art. No. 103873.
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
Q.B. Zhang, Z.X. Zhang, C.S. Wu, J.S. Yang, and Z.Y. Wang, Characteristics of vibration waves measured in concrete lining of excavated tunnel during blasting in adjacent tunnel, Coatings, 12(2022), No. 7, art. No. 954.
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
L. Liu, M. Chen, W.B. Lu, Y.G. Hu, and Z.D. Leng, Effect of the location of the detonation initiation point for bench blasting, Shock. Vib., 2015(2015), art. No. 907310.
|
[[12]] |
|
[[13]] |
Q.D. Gao, W.B. Lu, Z.D. Leng, Z.W. Yang, Y.Z. Zhang, and H.R. Hu, Effect of initiation location within blasthole on blast vibration field and its mechanism, Shock. Vib., 2019(2019), art. No. 5386014.
|
[[14]] |
Y.S. Miao, X.J. Li, H.H. Yan, X.H. Wang, and J.P. Sun, Experimental study of bilinear initiating system based on hard rock pile blasting, Shock. Vib., 2017(2017), art. No. 3638150.
|
[[15]] |
|
[[16]] |
|
[[17]] |
J.J. Zuo, R.S. Yang, X.M. Ma, L.Y. Yang, and Y. Zhao, Explosion wave and explosion fracture characteristics of cylindrical charges, Int. J. Rock Mech. Min. Sci., 135(2020), art. No. 104501.
|
[[18]] |
|
[[19]] |
R.S. Yang and J.J. Zuo, Experimental study on directional fracture blasting of cutting seam cartridge, Shock. Vib., 2019(2019), art. No. 1085921.
|
[[20]] |
|
[[21]] |
J.J. Ding, J.H. Yang, Z.W. Ye, Z.D. Leng, C. Yao, and C.B. Zhou, Cut-blasting method selection and parameter optimization for rock masses under high in situ stress, Int. J. Geomech., 23(2023), No. 12, art. No. 04023211.
|
[[22]] |
|
[[23]] |
K. Wang, Z.Q. Shi, Y.J. Shi, Z.G. Zhao, and D. Zhang, Characteristics of electrical explosion of single wire in a vacuum and in the air, Acta Phys. Sin., 66(2017), No. 18, art. No. 185203.
|
[[24]] |
K. Wang, Z.Q. Shi, Y.J. Shi, and Z.G. Zhao, Characteristics of the electrical explosion of fine metallic wires in vacuum, AIP Adv., 7(2017), No. 9, art. No. 095002.
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
Y.B. Wang, Z.J. Wen, G.Q. Liu, et al., Explosion propagation and characteristics of rock damage in decoupled charge blasting based on computed tomography scanning, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104540.
|
[[30]] |
|
[[31]] |
Z.L. Wang, H.C. Wang, J.G. Wang, and N.C. Tian, Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks, Comput. Geotech., 135(2021), art. No. 104172.
|
/
〈 | 〉 |