Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees
Yang Liu, Yufeng Liu, Sha Zhang, Lin Zhang, Peng Zhang, Shaorong Zhang, Na Liu, Zhou Li, Xuanhui Qu
Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees
The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys. In this study, FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film. Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders: amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide. The alloying elements within the oxide layer showed a laminated distribution, with Ni, Co, Cr, and Al/Ti, which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix. On the other hand, Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase. Comparative analysis of the oxide film with oxygen contents of 140, 280, and 340 ppm showed similar element distributions, while the thickness of the oxide film varies approximately at 9, 14, and 30 nm, respectively. These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders.
Ni-based superalloys / surface structure / oxide layer thickness / oxidation behavior / element distribution
[[1]] |
|
[[2]] |
Q.Z. Yang, X.G. Yang, W.Q. Huang, Y. Shi, and D.Q. Shi, Small fatigue crack propagation rate and behaviours in a powder metallurgy superalloy: Role of stress ratio and local microstructure, Int. J. Fatigue, 160(2022), art. No. 106861.
|
[[3]] |
|
[[4]] |
|
[[5]] |
Z.H. Yao, J. Hou, Y. Chen, W.Y. Xu, H. Jiang, and J.X. Dong, Effect of micron-sized particles on the crack growth behavior of a Ni-based Powder metallurgy superalloy, Mater. Sci. Eng. A, 860(2022), art. No. 144242.
|
[[6]] |
B. Sun, T.B. Zhang, L. Song, and L. Zhang, Oxidation behavior in static air and its effect on tensile properties of a powder metallurgy EP962NP nickel-based superalloy, J. Alloys Compd., 934(2023), art. No. 167795.
|
[[7]] |
B. Sreenu, R. Sarkar, S.S.S. Kumar, S. Chatterjee, and G.A. Rao, Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications, Mater. Sci. Eng. A, 797(2020), art. No. 140254.
|
[[8]] |
|
[[9]] |
C. Li, J.W. Teng, B.B. Yang, X.J. Ye, J.T. Liu, and Y.P. Li, Correlation between microstructure and mechanical properties of novel Co-Ni-based Powder metallurgy superalloy, Matrr. Charact., 181(2021), art. No. 111480.
|
[[10]] |
|
[[11]] |
J.E. MacDonald, R.H.U. Khan, M. Aristizabal, K.E.A. Essa, M.J. Lunt, and M.M. Attallah, Influence of powder characteristics on the microstructure and mechanical properties of HIPped CM247LC Ni superalloy, Mater. Des., 174(2019), art. No. 107796.
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
Q. Zhang, L. Zheng, H. Yuan, Z. Li, G.Q. Zhang, and J.X. Xie, Effects of composition and particle size on the surface state and degassing behavior of nickel-based superalloy powders, Appl. Surf. Sci., 556(2021), art. No. 149793.
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
Q. Zhang, L. Zheng, H. Yuan, Z. Li, G.Q. Zhang, and J.X. Xie, Effect of humid atmosphere on the microstructure and mechanical properties of a PM Ni-based superalloy: From Powders to bulk alloys, Mater. Charact., 202(2023), art. No. 113019.
|
[[22]] |
|
[[23]] |
B. Lynch, S. Neupane, F. Wiame, A. Seyeux, V. Maurice, and P. Marcus, An XPS and ToF-SIMS study of the passive film formed on a model FeCrNiMo stainless steel surface in aqueous media after thermal pre-oxidation at ultra-low oxygen pressure, Appl. Surf. Sci., 554(2021), art. No. 149435.
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
B. Fleischmann, J.P. Chateau-Cornu, L. Dembinski, et al., Influence of particle size on surface oxide of 316L stainless steel powders for hot isostatic pressing, Materiaiia, 22(2022), art. No. 101405.
|
[[28]] |
Y.D. Zhai, Y.H. Chen, Y.S. Zhao, et al, Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: The interface junction initiated outwards oxidation, Acta Mater., 215(2021), art. No. 116991.
|
[[29]] |
J.T. Shu, Z.Q. Dong, C. Zheng, et al., High-throughput experiment-assisted study of the alloying effects on oxidation of Nb-based alloys, Corros. Sci., 204(2022), art. No. 110383.
|
[[30]] |
|
[[31]] |
|
[[32]] |
W.W. Ding, W. Zhan, C. Gang, et al., Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization, Corros. Sci., 178(2021), art. No. 109080.
|
[[33]] |
|
[[34]] |
Z.Y. Zhao, X.H. Yu, C. Wang, S.Y. Yao, Q. Qi, and L.J. Wang, Oxidation mechanism of in situ TiC/Ni composites at 1073K, Corros. Sci., 194(2022), art. No. 109958.
|
[[35]] |
|
[[36]] |
Y. Liu, S. Zhang, L. Zhang, P. Zhang, S.R. Zhang, and X.H. Qu, A new perspective about the surface structure of FGH96 superalloys powders, Vacuum, 220(2024), art. No. 112838.
|
/
〈 | 〉 |