Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags

Zhiyin Deng, Xiaomeng Zhang, Guangyu Hao, Chunxin Wei, Miaoyong Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 977-987. DOI: 10.1007/s12613-023-2817-0
Research Article

Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags

Author information +
History +

Abstract

To investigate the dissolution behaviors of Al2O3 inclusions in CaO–5wt%MgO–SiO2–30wt%Al2O3–TiO2 system ladle slags, confocal scanning laser microscopy was conducted on the slags with different TiO2 contents (0–10wt%), and scanning electron microscopy was performed to study the interfacial reaction between Al2O3 and this slag system. The results disclose that the dissolution of Al2O3 inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions. In TiO2-bearing and TiO2-free ladle slags, there is no difference in the dissolution mechanism of Al2O3 inclusions at steelmaking temperatures. Boundary layer diffusion is found as the controlling step of the dissolution of Al2O3, and the diffusion coefficient is in the range of 4.18 × 10−10 to 2.18 × 10−9 m2/s at 1450–1500°C. Compared with the solubility of Al2O3 in the slags, slag viscosity and temperature play a more profound role in the dissolution of Al2O3 inclusions. A lower viscosity and a lower melting point of the slags are beneficial for the dissolution. Suitable addition of TiO2 (e.g., 5wt%) in ladle slags can enhance the dissolution of Al2O3 inclusions because of the low viscosity and melting point of the slags, while excessive addition of TiO2 (e.g., 10wt%) shows the opposite trend.

Keywords

inclusions / dissolution / ladle refining slag / titanium dioxide / confocal scanning laser microscopy

Cite this article

Download citation ▾
Zhiyin Deng, Xiaomeng Zhang, Guangyu Hao, Chunxin Wei, Miaoyong Zhu. Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(5): 977‒987 https://doi.org/10.1007/s12613-023-2817-0

References

[[1]]
Zhang LX, Chen M, Huang MY, Wang N, Wang C. Dissolution kinetics of SiO2 in FeO–SiO2–V2O3–CaO–MnO–Cr2O3–TiO2 system with different FeO contents. Metall. Mater. Trans. B, 2021, 52(4): 2703,
CrossRef Google scholar
[[2]]
Chen GJ, He SP, Wang Q. Dissolution behavior of Al2O3 into tundish slag for high-Al steel. J. Mater. Res. Technol., 2020, 9(5): 11311,
CrossRef Google scholar
[[3]]
Li ZR, Jia BR, Zhang YB, He SP, Wang QQ, Wang Q. Dissolution behaviour of Al2O3 in mould fluxes with low SiO2 content. Ceram. Int., 2019, 45(3): 4035,
CrossRef Google scholar
[[4]]
Samaddar BN, Kingery WD, Cooper AR Jr.. Dissolution in ceramic systems: 11, Dissolution of aluminu, mullite, anorthite, and silica in a calcium–aluminum–silicate slag. J. Am. Ceram. Soc., 1964, 47(5): 249,
CrossRef Google scholar
[[5]]
Sandhage KH, Yurek GJ. Indirect dissolution of sapphire into calcia–magnesia–alumina–silica melts: Electron micro-probe analysis of the dissolution process. J. Am. Ceram. Soc., 1990, 73(12): 3643,
CrossRef Google scholar
[[6]]
Park YJ, Cho YM, Cha WY, Kang YB. Dissolution kinetics of alumina in molten CaO–Al2O3–FetO–MgO–SiO2 oxide representing the RH slag in steelmaking process. J. Am. Ceram. Soc., 2020, 103(3): 2210,
CrossRef Google scholar
[[7]]
Sridhar S, Cramb AW. Kinetics of Al2O3 dissolution in CaO–MgO–SiO2–Al2O3 slags: In Situ observations and analysis. Metall. Mater. Trans. B, 2000, 31(2): 406,
CrossRef Google scholar
[[8]]
Liu J, Guo M, Jones PT, Verhaeghe F, Blanpain B, Wollants P. In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags. J. Eur. Ceram. Soc., 2007, 27(4): 1961,
CrossRef Google scholar
[[9]]
Park JH, Park JG, Min DJ, Lee YE, Kang YB. In situ observation of the dissolution phenomena of SiC particle in CaO–SiO2–MnO slag. J. Eur. Ceram. Soc., 2010, 30(15): 3181,
CrossRef Google scholar
[[10]]
Lee YM, Yang JK, Min DJ, Park JH. Mechanism of MgO dissolution in MgF2–CaF2–MF (M = Li or Na) melts: Kinetic analysis via in situ high temperature confocal scanning laser microscopy (HT-CSLM). Ceram. Int., 2019, 45(16): 20251,
CrossRef Google scholar
[[11]]
Sharma M, Dogan N. Dissolution behavior of aluminum titanate inclusions in steelmaking slags. Metall. Mater. Trans. B, 2020, 51(2): 570,
CrossRef Google scholar
[[12]]
Miao KY, Haas A, Sharma M, Mu WZ, Dogan N. In situ observation of calcium aluminate inclusions dissolution into steelmaking slag. Metall. Mater. Trans. B, 2018, 49(4): 1612,
CrossRef Google scholar
[[13]]
Tian TL, Zhang YZ, Zhang HH, Zhang KX, Li J, Wang H. Dissolution behavior of SiO2 in the molten blast furnace slags. Int. J. Appl. Ceram. Technol., 2019, 16(3): 1078,
CrossRef Google scholar
[[14]]
Zhang L, Wang WL, Zhang L, Zeng J, Gao X. A comparison study on the dissolution mechanism of Al2O3 inclusion on fluorine-bearing and fluorine-free molten mold fluxes. Ceram. Int., 2023, 49(16): 27176,
CrossRef Google scholar
[[15]]
Gou L, Liu H, Ren Y, Zhang LF. Concept of inclusion capacity of slag and its application on the dissolution of Al2O3, ZrO2 and SiO2 inclusions in CaO–Al2O3–SiO2 slag. Metall. Mater. Trans. B, 2023, 54(3): 1314,
CrossRef Google scholar
[[16]]
Ren CY, Huang CD, Zhang LF, Ren Y. In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy. Int. J. Miner. Metall. Mater., 2023, 30(2): 345,
CrossRef Google scholar
[[17]]
Kim Y, Kashiwaya Y, Chung Y. Effect of varying Al2O3 contents of CaO–Al2O3–SiO2 slags on lumped MgO dissolution. Ceram. Int., 2020, 46(5): 6205,
CrossRef Google scholar
[[18]]
Mu WZ, Xuan CJ. Phase-field study of dissolution behaviors of different oxide particles into oxide melts. Ceram. Int., 2020, 46(10): 14949,
CrossRef Google scholar
[[19]]
Xuan CJ, Mu WZ. A phase-field model for the study of isothermal dissolution behavior of alumina particles into molten silicates. J. Am. Ceram. Soc., 2019, 102(11): 6480,
CrossRef Google scholar
[[20]]
Liu JJ, Zou J, Guo MX, Moelans N. Phase field simulation study of the dissolution behavior of Al2O3 into CaO–Al2O3–SiO2 slags. Comput. Mater. Sci., 2016, 119: 9,
CrossRef Google scholar
[[21]]
Heulens J, Blanpain B, Moelans N. A phase field model for isothermal crystallization of oxide melts. Acta Mater., 2011, 59(5): 2156,
CrossRef Google scholar
[[22]]
Wang ZJ, Sohn I. A review of in situ observations of crystallization and growth in high temperature oxide melts. JOM, 2018, 70(7): 1210,
CrossRef Google scholar
[[23]]
Sohn I, Dippenaar R. In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope. Metall. Mater. Trans. B, 2016, 47(4): 2083,
CrossRef Google scholar
[[24]]
Fu DC, Wen GH, Zhu XQ, Guo JL, Tang P. Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation. J. Iron Steel Res. Int., 2021, 28(9): 1133,
CrossRef Google scholar
[[25]]
Tian QR, Wang GC, Shang DL, et al.. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall. Mater. Trans. B, 2018, 49(6): 3137,
CrossRef Google scholar
[[26]]
Wang YG, Liu CJ. Agglomeration characteristics of various oxide inclusions in molten steel containing rare earth element under different deoxidation conditions. ISIJ Int., 2021, 61(5): 1396,
CrossRef Google scholar
[[27]]
Mu WZ, Xuan CJ. Agglomeration mechanism of complex Ti–Al oxides in liquid ferrous alloys considering high-temperature interfacial phenomenon. Metall. Mater. Trans. B, 2019, 50(6): 2694,
CrossRef Google scholar
[[28]]
Zhao XJ, Yang ZN, Zhang FC. In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel. Int. J. Miner. Metall. Mater., 2020, 27(5): 620,
CrossRef Google scholar
[[29]]
Guo J, Chen XR, Han SW, Yan Y, Guo HJ. Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr–8wt%Ni stainless steel and its properties during soaking process. Int. J. Miner. Metall. Mater., 2020, 27(3): 328,
CrossRef Google scholar
[[30]]
Valdez M, Prapakorn K, Cramb AW, Sridhar S. Dissolution of alumina particles in CaO–Al2O3–SiO2–MgO slags. Ironmaking Steelmaking, 2002, 29(1): 47,
CrossRef Google scholar
[[31]]
Sharma M, Mu WZ, Dogan N. In situ observation of dissolution of oxide inclusions in steelmaking slags. JOM, 2018, 70(7): 1220,
CrossRef Google scholar
[[32]]
Taira S, Nakashima K, Mori K. Kinetic behavior of dissolution of sintered alumina into CaO–SiO2–Al2O3 slags. ISIJ Int., 1993, 33(1): 116,
CrossRef Google scholar
[[33]]
Cho WD, Fan P. Diffusional dissolution of alumina in various steelmaking slags. ISIJ Int., 2004, 44(2): 229,
CrossRef Google scholar
[[34]]
F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain, and P. Wollants, Dissolution and diffusion behavior of Al2O3 in a CaO–Al2O3–SiO2 liquid: An experimental-numerical approach, Appl. Phys. Lett., 91(2007), No. 12, art. No. 124104.
[[35]]
Ren CY, Zhang LF, Zhang J, Wu SJ, Zhu P, Ren Y. In situ observation of the dissolution of Al2O3 particles in CaO–Al2O3–SiO2 slags. Metall. Mater. Trans. B, 2021, 52(5): 3288,
CrossRef Google scholar
[[36]]
Yi KW, Tse C, Park JH, Valdez M, Cramb AW, Sridhar S. Determination of dissolution time of Al2O3 and MgO inclusions in synthetic Al2O3–CaO–MgO slags. Scand. J. Metall., 2003, 32(4): 177,
CrossRef Google scholar
[[37]]
Fox AB, Valdez ME, Gisby J, Atwood RC, Lee PD, Sridhar S. Dissolution of ZrO2, Al2O3, MgO and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag. ISIJ Int., 2004, 44(5): 836,
CrossRef Google scholar
[[38]]
Monaghan BJ, Chen L. Effect of changing slag composition on spinel inclusion dissolution. Ironmaking Steelmaking, 2006, 33(4): 323,
CrossRef Google scholar
[[39]]
Ren Y, Zhu P, Ren CY, Liu N, Zhang LF. Dissolution of SiO2 inclusions in CaO–SiO2-based slags in situ observed using high-temperature confocal scanning laser microscopy. Metall. Mater. Trans. B, 2022, 53(2): 682,
CrossRef Google scholar
[[40]]
Monaghan BJ, Chen L. Dissolution behavior of alumina micro-particles in CaO–SiO2–Al2O3 liquid oxide. J. Non Cryst. Solids, 2004, 347(1–3): 254,
CrossRef Google scholar
[[41]]
Hao GY, Deng ZY, Wei CX, Zhu MY. Degradation behavior of MgO-based refractory by CaO–SiO2–Al2O3–MgO–TiO2 system ladle slags. Metall. Mater. Trans. B, 2023, 54(6): 3203,
CrossRef Google scholar
[[42]]
Wang Y, Cho JH, Jeong TS, et al.. Evolution of the non-metallic inclusions influenced by slag–metal reactions in Ticontaining ferritic stainless steel. Metall. Mater. Trans. B, 2021, 52(6): 3986,
CrossRef Google scholar
[[43]]
Pang ZD, XW, Yan ZM, Bai CG, Xie HE, Pan C. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag. Iron Steel, 2020, 55(8): 181
[[44]]
X.M. Zhang, Z.W. Yan, Z.Y. Deng, and M.Y. Zhu, Effect of TiO2 addition on the melting behaviors of CaO-SiO2-30%Al2O3-5%MgO system refining slags, Metals, 13(2023), No. 2, art. No. 431.
[[45]]
X.M. Zhang, Z.Y. Deng, Z.W. Yan, C.X. Wei and M.Y. Zhu; Effect of TiO2 addition on the viscosity of ladle refining slags, Metall. Mater. Trans. B, (2024). Doi: https://doi.org/10.1007/s11663-02403055-9.
[[46]]
Whelan MJ. On the kinetics of precipitate dissolution. Met. Sci. J., 1969, 3(1): 95,
CrossRef Google scholar
[[47]]
Mills KC, Keene BJ. Physical properties of BOS slags. Int. Mater. Rev., 1987, 32(1): 1,
CrossRef Google scholar
[[48]]
Feichtinger S, Michelic SK, Kang YB, Bernhard C. In situ observation of the dissolution of SiO2 particles in CaO–Al2O3–SiO2 slags and mathematical analysis of its dissolution pattern. J. Am. Ceram. Soc., 2014, 97(1): 316,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/