Temperature-sensing array using the metal-to-insulator transition of NdxSm1−xNiO3

Fengbo Yan, Ziang Li, Hao Zhang, Yuchen Cui, Kaiqi Nie, Nuofu Chen, Jikun Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1694-1700.

International Journal of Minerals, Metallurgy, and Materials All Journals
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1694-1700. DOI: 10.1007/s12613-023-2816-1
Research Article

Temperature-sensing array using the metal-to-insulator transition of NdxSm1−xNiO3

Author information +
History +

Abstract

Rare-earth nickelates (RENiO3) show widely tunable metal-to-insulator transition (MIT) properties with ignorable variations in lattice constants and small latent heat across the critical temperature (TMIT). Particularly, it is worth noting that compared with the more commonly investigated vanadium oxides, the MIT of RENiO3 is less abrupt but usually across a wider range of temperatures. This sheds light on their alternative applications as negative temperature coefficient resistance (NTCR) thermistors with high sensitivity compared with the current NTCR thermistors, other than their expected use as critical temperature resistance thermistors. In this work, we demonstrate the NTCR thermistor functionality for using the adjustable MIT of NdxSm1−xNiO3 within 200–100 K, which displays larger magnitudes of NTCR (e.g., more than 7%/K) that is unattainable in traditional NTCR thermistor materials. The temperature dependence of resistance (R–T) shows sharp variation during the MIT of NdxSm1−xNiO3 with no hysteresis via decreasing the Nd content (e.g., x ≤ 0.8), and such a R–T tendency can be linearized by introducing an optimum parallel resistor. The sensitive range of temperature can be further extended to 210–360 K by combining a series of NdxSm1−xNiO3 with eight rare-earth co-occupation ratios as an array, with a high magnitude of NTCR (e.g., 7%–14%/K) covering the entire range of temperatures.

Cite this article

Download citation ▾
Fengbo Yan, Ziang Li, Hao Zhang, Yuchen Cui, Kaiqi Nie, Nuofu Chen, Jikun Chen. Temperature-sensing array using the metal-to-insulator transition of NdxSm1−xNiO3. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1694‒1700 https://doi.org/10.1007/s12613-023-2816-1
This is a preview of subscription content, contact us for subscripton.

References

[1]
ChenJK, HuHY, WangJO, et al. . A d-band electron correlated thermoelectric thermistor established in metastable perovskite family of rare-earth nickelates. ACS Appl. Mater. Interfaces, 2019, 11(37): 34128
CrossRef Google scholar
[2]
S.D. Ha, J. Shi, Y. Meroz, L. Mahadevan, and S. Ramanathan, Neuromimetic circuits with synaptic devices based on strongly correlated electron systems, Phys. Rev. Appl., 2(2014), No. 6, art. No. 064003.
[3]
H.T. Zhang, T.J. Park, I.A. Zaluzhnyy, et al., Perovskite neural trees, Nat. Commun., 11(2020), No. 1, art. No. 2245.
[4]
F. Zuo, P. Panda, M. Kotiuga, et al., Habituation based synaptic plasticity and organismic learning in a quantum perovskite, Nat. Commun., 8(2017), No. 1, art. No. 240.
[5]
GuoF, ChenS, ChenZ, et al. . Printed smart photovoltaic window integrated with an energy-saving thermochromic layer. Adv. Opt. Mater., 2015, 3(11): 1524
CrossRef Google scholar
[6]
X. Deng, S.Q. Wang, Y.X. Liu, et al., A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing, Adv. Funct. Mater., 31(2021), No. 23, art. No. 2101099.
[7]
Z.A. Li, F.B. Yan, X.Y. Li, et al., Molten-salt synthesis of rare-earth nickelate electronic transition semiconductors at medium high metastability, Scripta Mater., 207(2022), art. No. 114271.
[8]
LiD, LeeK, WangBY, et al. . Superconductivity in an infinite-layer nickelate. Nature, 2019, 572(7771): 624
CrossRef Google scholar
[9]
S. Hyeon Lee, M. Kim, S.D. Ha, J.W. Lee, S. Ramanathan, and S. Tiwari, Space charge polarization induced memory in SmNiO3/Si transistors, Appl. Phys. Lett., 102(2013), No. 7, art. No. 072102.
[10]
S.H. Misha, N. Tamanna, A. Prakash, et al., Comprehensive analysis of electro thermally driven nanoscale insulator-metal transition SmNiO3-based selector for cross-point memory array, Jpn. J. Appl. Phys., 54(2015), No. 4S, art. No. 04DD09.
[11]
RamadossK, ZuoF, SunYF, et al. . Proton-doped strongly correlated perovskite nickelate memory devices. IEEE Electron Device Lett., 2018, 39(10): 1500
[12]
J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, A correlated nickelate synaptic transistor, Nat. Commun., 4(2013), art. No. 2676.
[13]
OhC, JoM, SonJ. All-solid-state synaptic transistors with high-temperature stability using proton pump gating of strongly correlated materials. ACS Appl. Mater. Interfaces, 2019, 11(17): 15733
CrossRef Google scholar
[14]
Y.Y. Tian, S.H. Wang, G. Li, et al., Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers, Chin. Phys. B, 29(2020), No. 11, art. No. 117504.
[15]
ZhangHT, ParkTJ, IslamANMN, et al. . Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375(6580): 533
CrossRef Google scholar
[16]
J.K. Chen, Z.A. Li, H.L. Dong, et al., Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation, Adv. Funct. Mater., 30(2020), No. 23, art. No. 2000987.
[17]
LiXY, LiZA, YanFB, et al. . Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates. Rare Met., 2022, 41(10): 3495
CrossRef Google scholar
[18]
LiHY, WangYZ, MengFQ, et al. . Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions. Int. J. Miner. Metall. Mater., 2023, 30(12): 2441
CrossRef Google scholar
[19]
YanFB, MiZS, ChenJH, et al. . Revealing the role of interfacial heterogeneous nucleation in the metastable thin film growth of rare-earth nickelate electronic transition materials. Phys. Chem. Chem. Phys., 2022, 24(16): 9333
CrossRef Google scholar
[20]
KleinYM, KozłowskiM, LindenA, LacorreP, MedardeM, GawrylukDJ. RENiO3 single crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) grown from molten salts under 2000 bar of oxygen gas pressure. Cryst. Growth Des., 2021, 21(7): 4230
CrossRef Google scholar
[21]
J.R. Li, R.J. Green, Z. Zhang, et al., Sudden collapse of magnetic order in oxygen-deficient nickelate films, Phys. Rev. Lett., 126(2021), No. 18, art. No. 187602.
[22]
ChenJK, HuHY, WangJO, et al. . Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates. Mater. Horiz., 2019, 6(4): 788
CrossRef Google scholar
[23]
H. Zhang, Z. Li, T. Zhang, et al., Improvement of metal–insulator transition and mechanical strength of RENiO3 by co-sintering, J. Appl. Phys., 134(2023), No. 13, art. No. 135104.
[24]
W.J. Mao, Y.M. Jia, J. Wu, et al., Optical temperature sensing of piezoelectric Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ceramic, Funct. Mater. Lett., 9(2016), No. 5, art. No. 1650060.

58

Accesses

0

Citations

Detail

Sections
Recommended

/