Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation

Haonan Si, Xuan Zhao, Qingliang Liao, Yue Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 855-861. DOI: 10.1007/s12613-023-2808-1
Research Article

Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation

Author information +
History +

Abstract

Lithography is a pivotal micro/nanomanufacturing technique, facilitating performance enhancements in an extensive array of devices, encompassing sensors, transistors, and photovoltaic devices. The key to creating highly precise, multiscale-distributed patterned structures is the precise control of the lithography process. Herein, high-quality patterned ZnO nanostructures are constructed by systematically tuning the exposure and development times during lithography. By optimizing these parameters, ZnO nanorod arrays with line/hole arrangements are successfully prepared. Patterned ZnO nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure, enlarged surface area, and improved light capture ability, which achieve highly efficient energy conversion in perovskite solar cells. The lithography process management for these patterned ZnO nanostructures provides important guidance for the design and construction of complex nanostructures and devices with excellent performance.

Keywords

lithography / patterned zno nanorod arrays / light absorption / perovskite solar cell

Cite this article

Download citation ▾
Haonan Si, Xuan Zhao, Qingliang Liao, Yue Zhang. Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(5): 855‒861 https://doi.org/10.1007/s12613-023-2808-1

References

[[1]]
Wang XH, Dai X, Wang H, Wang J, et al.. All-water etching-free electron beam lithography for on-chip nanomaterials. ACS Nano, 2023, 17(5): 4933,
CrossRef Pubmed Google scholar
[[2]]
P.P. Zhang, G.L. Yang, F. Li, J.B. Shi, and H.Z. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes, Nat. Commun., 13(2022), No. 1, art. No. 6713.
[[3]]
Chai ZM, Childress A, Busnaina AA. Directed assembly of nanomaterials for making nanoscale devices and structures: Mechanisms and applications. ACS Nano, 2022, 16(11): 17641, pmcid: 9706815
CrossRef Pubmed Google scholar
[[4]]
B.Y. Wen, J.Y. Wang, T.L. Shen, et al., Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution, Light Sci. Appl., 11(2022), No. 1, art. No. 235.
[[5]]
Capitaine A, Bochet-Modaresialam M, Poungsripong P, et al.. Nanoparticle imprint lithography: From nanoscale metrology to printable metallic grids. ACS Nano, 2023, 17(10): 9361, pmcid: 10211370
CrossRef Pubmed Google scholar
[[6]]
B.B. Jin, Y. Hong, Z.Q. Li, et al., Ice-assisted electron-beam lithography for halide perovskite optoelectronic nanodevices, Nano Energy, 102(2022), art. No. 107692.
[[7]]
D. Chen, Y. Wang, H. Zhou, et al., Current and future trends for polymer micro/nanoprocessing in industrial applications, Adv. Mater., 34(2022), No. 52, art. No. e2200903.
[[8]]
Liu SF, Hou ZW, Lin LH, et al.. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science, 2022, 377(6610): 1112,
CrossRef Pubmed Google scholar
[[9]]
M. Luitz, M. Lunzer, A. Goralczyk, et al., High resolution patterning of an organic–inorganic photoresin for the fabrication of platinum microstructures, Adv. Mater., 33(2021), No. 37, art. No. 2101992.
[[10]]
D. Barcons Ruiz, H. Herzig Sheinfux, R. Hoffmann, et al., Engineering high quality graphene superlattices via ion milled ultra-thin etching masks, Nat. Commun., 13(2022), No. 1, art. No. 6926.
[[11]]
A. Sharstniou, S. Niauzorau, A. L. Hardison, et al., Roughness Suppression in electrochemical nanoimprinting of Si for applications in silicon photonics, Adv. Mater., 34(2022), No. 43,. art. No. 2206608.
[[12]]
J.W. Lee and S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications, Nano Micro Lett., 15(2023), No. 1, art. No. 184.
[[13]]
Wang YY, Fedin I, Zhang H, Talapin DV. Direct optical lithography of functional inorganic nanomaterials. Science, 2017, 357(6349): 385,
CrossRef Pubmed Google scholar
[[14]]
Si HN, Kang Z, Cheng X, Bai ZM, Zhang Y. Application of patterned ZnO in energy devices. Chin. J. Eng., 2017, 39(7): 973
[[15]]
Chen X, Lin P, Yan XQ, et al.. Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells. ACS Appl. Mater. Interfaces, 2015, 7(5): 3216,
CrossRef Pubmed Google scholar
[[16]]
Si HN, Liao QL, Zhang Z, Y., et al.. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy, 2016, 22: 223,
CrossRef Google scholar
[[17]]
H.N. Si, X. Zhao, Z. Zhang, Q.L. Liao, and Y. Zhang, Low-temperature electron-transporting materials for perovskite solar cells: Fundamentals, progress, and outlook, Coord. Chem. Rev., 500(2024), art. No. 215502.
[[18]]
Que ZB, Chu L, Zhai SB, Feng YF, et al.. Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells. Int. J. Miner. Metall. Mater., 2022, 29(6): 1280,
CrossRef Google scholar
[[19]]
K.M. Deng and L. Li, Optical design in perovskite solar cells, Small Methods, 4(2020), No. 6, art. No. 1900150.
[[20]]
Zheng JH, Zhu LX, Shen ZT, et al.. Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. Int. J. Miner. Metall. Mater., 2022, 29(2): 283,
CrossRef Google scholar
[[21]]
Liu WF, Wang JB, Xu XZ, Zhao CZ, Xu XB, Weiss PS. Single-step dual-layer photolithography for tunable and scalable nanopatterning. ACS Nano, 2021, 15(7): 12180,
CrossRef Pubmed Google scholar
[[22]]
S.M. Aghaei, N. Yasrebi, and B. Rashidian, Characterization of line nanopatterns on positive photoresist produced by scanning near-field optical microscope, J. Nanomater., 2015(2015), No. 1, art. No. 936876.
[[23]]
Striccoli M. Photolithography based on nanocrystals. Science, 2017, 357(6349): 353,
CrossRef Pubmed Google scholar
[[24]]
W. Wang, P. Pfeiffer, and L. Schmidt-Mende, Direct patterning of metal chalcogenide semiconductor materials, Adv. Funct. Mater., 30(2020), No. 27, art. No. 2002685.
[[25]]
S.H. Luo, B.H. Hoff, S.A. Maier, and J.C. de Mello, Scalable fabrication of metallic nanogaps at the sub-10 nm level, Adv. Sci., 8(2021), No. 24, art. No. 2102756.
[[26]]
H.H. Li, M.L. Liu, J.J. Zhao, et al., Controllable heterogeneous nucleation for patterning high-quality vertical and horizontal ZnO microstructures toward photodetectors, Small, 16(2020), No. 42, art. No. 2004136.
[[27]]
Z. Kang, H.N. Si, S.C. Zhang, et al., Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting, Adv. Funct. Mater., 29(2019), No. 15, art. No. 1808032.
[[28]]
Si HN, Kang Z, Liao QL, et al.. Design and tailoring of patterned ZnO nanostructures for energy conversion applications. Sci. China Mater., 2017, 60(9): 793,
CrossRef Google scholar
[[29]]
L.Q. Tian, Q. Xin, C. Zhao, et al., Nanoarray structures for artificial photosynthesis, Small, 17(2021), No. 38, art. No. 2006530.
[[30]]
C.Z. Xu, S.C. Zhang, W.Q. Fan, et al., Pushing the limit of open-circuit voltage deficit via modifying buried interface in CsPbI3 perovskite solar cells, Adv. Mater., 35(2023), No. 7, art. No. 2207172.
[[31]]
M. Yue, J. Su, P. Zhao, et al., Optimizing the performance of CsPbI3 -Based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering, Nano Micro Lett., 11(2019), No. 1, art. No. 91.
[[32]]
W.H. Wang and L.M. Qi, Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices, Adv. Funct. Mater., 29(2019), No. 25, art. No. 1807275.
[[33]]
Q.C. He, H.M. Zhang, S.Q. Han, et al., Improvement of nanopore structure SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells, Mater. Sci. Semicond. Process., 148(2022), art. No. 106787.
[[34]]
S.Q. Deng, B.E. Tan, A.S.R. Chesman, et al., Back-contact perovskite solar cell fabrication via microsphere lithography, Nano Energy, 102(2022), art. No. 107695.

Accesses

Citations

Detail

Sections
Recommended

/