Current progress of research on heat-resistant Mg alloys: A review

Hong Yang , Wenlong Xie , Jiangfeng Song , Zhihua Dong , Yuyang Gao , Bin Jiang , Fusheng Pan

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1406 -1425.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1406 -1425. DOI: 10.1007/s12613-023-2802-7
Invited Review

Current progress of research on heat-resistant Mg alloys: A review

Author information +
History +
PDF

Abstract

With the increasing attention received by lightweight metals, numerous essential fields have increased requirements for magnesium (Mg) alloys with good room-temperature and high-temperature mechanical properties. However, the high-temperature mechanical properties of commonly used commercial Mg alloys, such as AZ91D, deteriorate considerably with increasing temperatures. Over the past several decades, extensive efforts have been devoted to developing heat-resistant Mg alloys. These approaches either inhibit the generation of thermally unstable phases or promote the formation of thermally stable precipitates/phases in matrices through solid solution or precipitation strengthening. In this review, numerous studies are systematically introduced and discussed. Different alloy systems, including those based on Mg–Al, Mg–Zn, and Mg–rare earth, are carefully classified and compared to reveal their mechanical properties and strengthening mechanisms. The emphasis, limitations, and future prospects of these heat-resistant Mg alloys are also pointed out and discussed to develop heat-resistant Mg alloys and broaden their potential application areas in the future.

Keywords

magnesium alloys / mechanical properties / heat resistance / microstructures / high temperatures / strengthening mechanisms

Cite this article

Download citation ▾
Hong Yang, Wenlong Xie, Jiangfeng Song, Zhihua Dong, Yuyang Gao, Bin Jiang, Fusheng Pan. Current progress of research on heat-resistant Mg alloys: A review. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1406-1425 DOI:10.1007/s12613-023-2802-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeong HT, Kim WJ. The hot compressive deformation behavior of cast Mg–Gd–Y–Zn–Zr alloys with and without LPSO phase in their initial microstructures. J. Magnes. Alloys, 2022, 10(10): 2901.

[2]

Yin WJ, Briffod F, Shiraiwa T, Enoki M. Mechanical properties and failure mechanisms of Mg–Zn–Y alloys with different extrusion ratio and LPSO volume fraction. J. Magnes. Alloys, 2022, 10(8): 2158.

[3]

Zhang JH, Liu SJ, Wu RZ, Hou LG, Zhang ML. Recent developments in high-strength Mg–RE-based alloys: Focusing on Mg–Gd and Mg–Y systems. J. Magnes. Alloys, 2018, 6(3): 277.

[4]

Qi MF, Wei LY, Xu YZ, et al. Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–.xY biological magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(9): 1746.

[5]

Liao HB, Mo LL, Zhou X, Yuan ZZ, Du J. Revealing the nucleation event of Mg–Al alloy induced by Fe impurity. Int. J. Miner. Metall. Mater., 2022, 29(7): 1317.

[6]

Pekguleryuz M, Celikin M. Creep resistance in magnesium alloys. Int. Mater. Rev., 2010, 55(4): 197.

[7]

Luo AA. Recent magnesium alloy development for elevated temperature applications. Int. Mater. Rev., 2004, 49(1): 13.

[8]

Pekguleryuz MO, Kaya AA. Creep resistant magnesium alloys for powertrain applications. Adv. Eng. Mater., 2003, 5(12): 866.

[9]

Athul KR, Pillai UTS, Srinivasan A, Pai BC. A review of different creep mechanisms in Mg alloys based on stress exponent and activation energy. Adv. Eng. Mater., 2016, 18(5): 770.

[10]

Kainer KU, Huang YD, Dieringa H, Hort N. Status of the development of creep resistant magnesium materials for automotive applications. Mater. Sci. Forum, 2010, 638–642, 73.

[11]

D.H. Zhang, S.C. Zhao, C.L. Wang, et al., Achieving enhanced high-temperature mechanical properties in Mg–Nd–Sm–Zn–Ca–Zr alloy by Ag addition, Mater. Today Commun., 31(2022), art. No. 103666.

[12]

D.H. Zhang, S.C. Zhao, H.T. Chen, Y.C. Feng, E.J. Guo, and J.F. Li, Microstructure and mechanical properties of EK30 alloy synergistically reinforced by Ag alloying and hot extrusion for aerospace applications, Materials, 15(2022), No. 23, art. No. 8613.

[13]

Chen ZH. Heat-Resistant Mg Alloys, 2007, Beijing, Chemical Industry Press.

[14]

Yin BZ, Liu JG, Peng B, et al. Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion. J. Magnes. Alloys, 2024, 12(4): 1376.

[15]

Mo N, Tan QY, Bermingham M, et al. Current development of creep-resistant magnesium cast alloys: A review. Mater. Des., 2018, 155, 422.

[16]

Yu ZP, Yan YH, Yao J, et al. Effect of tensile direction on mechanical properties and microstructural evolutions of rolled Mg–Al–Zn–Sn magnesium alloy sheets at room and elevated temperatures. J. Alloys Compd., 2018, 744, 211.

[17]

Wang H, Boehlert CJ, Wang QD, Yin DD, Ding WJ. In-situ analysis of the tensile deformation modes and anisotropy of extruded Mg–10Gd–3Y–0.5Zr (wt.%) at elevated temperatures. Int. J. Plast., 2016, 84, 255.

[18]

Chapuis A, Driver JH. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater., 2011, 59(5): 1986.

[19]

J.H. Cui, H. Yang, Y.X. Zhou, et al., Optimizing the microstructures and enhancing the mechanical properties of AZ81 alloy by adding TC4 particles, Mater. Sci. Eng. A, 863(2023), art. No. 144518.

[20]

Lu SH, Wu D, Chen RS, Han E. The influence of temperature on twinning behavior of a Mg–Gd–Y alloy during hot compression. Mater. Sci. Eng. A, 2018, 735, 173.

[21]

Čapek J, Farkas G, Pilch J, Máthis K. Temperature dependence of twinning activity in random textured cast magnesium. Mater. Sci. Eng. A, 2015, 627, 333.

[22]

Yu ZJ, Huang YD, Dieringa H, et al. High temperature mechanical behavior of an extruded Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy. Mater. Sci. Eng. A, 2015, 645, 213.

[23]

Yang H, Gavras S, Dieringa H. Brabazon D. Creep characteristics of metal matrix composites. Encyclopedia of Materials: Composites, 2021, Amsterdam, Elsevier, 375.

[24]

Yang H, Chen XH, Huang GS, et al. Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective. J. Magnes. Alloys, 2022, 10(9): 2311.

[25]

Mabuchi M, Higashi K. Strengthening mechanisms of Mg–Si alloys. Acta Mater., 1996, 44(11): 4611.

[26]

T. Dessolier, P. Lhuissier, F. Roussel-Dherbey, et al., Effect of temperature on deformation mechanisms of AZ31 Mg-alloy under tensile loading, Mater. Sci. Eng. A, 775(2020), art. No. 138957.

[27]

Zhai DJ, Li XP, Shen J. Mechanism of microarc oxidation on AZ91D alloy induced by β-Mg17Al12 phase. Int. J. Miner. Metall. Mater., 2024, 31(4): 712.

[28]

Han J, Wang C, Song YM, Liu ZY, Sun JP, Zhao JY. Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling. Int. J. Miner. Metall. Mater., 2022, 29(8): 1551.

[29]

Chen YH, Wang LP, Feng YC, Guo EJ, Zhao SC, Wang L. Effect of Ca and Sm combined addition on the microstructure and elevated-temperature mechanical properties of Mg–6Al alloys. J. Mater. Eng. Perform., 2019, 28(5): 2892.

[30]

Miao JS, Sun WH, Klarner AD, Luo AA. Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 phase in a Mg–Al–Sn–Ag alloy. Scripta Mater., 2018, 154, 192.

[31]

K. Korgiopoulos, B. Langelier, and M. Pekguleryuz, Mg17Al12 phase refinement and the improved mechanical performance of Mg–6Al alloy with trace erbium addition, Mater. Sci. Eng. A, 812(2021), art. No. 141075.

[32]

Wang PP, Jiang HT, Wang YJ, et al. Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy. Int. J. Miner. Metall. Mater., 2022, 29(8): 1559.

[33]

Asl KM, Tari A, Khomamizadeh F. The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys. Mater. Sci. Eng. A, 2009, 523(1–2): 1.

[34]

Srinivasan A, Pillai UTS, Pai BC. Microstructure and mechanical properties of Si and Sb added AZ91 magnesium alloy. Metall. Mater. Trans. A, 2005, 36(8): 2235.

[35]

Srinivasan A, Pillai UTS, Swaminathan J, Das SK, Pai BC. Observations of microstructural refinement in Mg–Al–Si alloys containing strontium. J. Mater. Sci., 2006, 41(18): 6087.

[36]

Srinivasan A, Ajithkumar KK, Swaminathan J, Pillai UTS, Pai BC. Creep behavior of AZ91 magnesium alloy. Procedia Eng., 2013, 55, 109.

[37]

Chen JH, Chen ZH, Yan HG, Zhang FQ, Liao K. Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys. J. Alloys Compd., 2008, 461(1–2): 209.

[38]

Kang DH, Park SS, Kim NJ. Development of creep resistant die cast Mg–Sn–Al–Si alloy. Mater. Sci. Eng. A, 2005, 413–414, 555.

[39]

Li HX, Xu WJ, Zhang YF, et al. Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method. Int. J. Miner. Metall. Mater., 2024, 31(1): 129.

[40]

Xie JS, Zhang Z, Liu SJ, et al. Designing new low alloyed Mg–RE alloys with high strength and ductility via high-speed extrusion. Int. J. Miner. Metall. Mater., 2023, 30(1): 82.

[41]

Zhang TT, Yu WB, Ma CS, Chen WT, Zhang L, Xiong SM. The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy. J. Magnes. Alloys, 2023, 11(9): 3141.

[42]

Mahmudi R, Kabirian F, Nematollahi Z. Microstructural stability and high-temperature mechanical properties of AZ91 and AZ91+2RE magnesium alloys. Mater. Des., 2011, 32(5): 2583.

[43]

Dong XX, Feng LY, Wang SH, Nyberg EA, Ji SX. A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C. J. Magnes. Alloys, 2021, 9(1): 90.

[44]

Anyanwu IA, Gokan Y, Suzuki A, et al. Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg–Zn–Al–Ca–RE alloys. Mater. Sci. Eng. A, 2004, 380(1–2): 93.

[45]

Homma T, Hirawatari S, Sunohara H, Kamado S. Room and elevated temperature mechanical properties in the as-extruded Mg–Al–Ca–Mn alloys. Mater. Sci. Eng. A, 2012, 539, 163.

[46]

Suzuki A, Saddock ND, Jones JW, Pollock TM. Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Mater., 2005, 53(9): 2823.

[47]

Zhang Z, Couture A, Luo A. An investigation of the properties of Mg–Zn–Al alloys. Scripta Mater., 1998, 39(1): 45.

[48]

Tang B, Fu JL, Feng JK, Zhong XT, Guo YY, Wang HL. Effect of Zn content on microstructure, mechanical properties and thermal conductivity of extruded Mg–Zn–Ca–Mn alloys. Int. J. Miner. Metall. Mater., 2023, 30(12): 2411.

[49]

Yang K, Pan HC, Du S, et al. Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility. Int. J. Miner. Metall. Mater., 2022, 29(7): 1396.

[50]

Zhang WQ, Xiao WL, Wang F, Ma CL. Development of heat resistant Mg–Zn–Al-based magnesium alloys by addition of La and Ca: Microstructure and tensile properties. J. Alloys Compd., 2016, 684, 8.

[51]

Mo WF, Zhang L, Wu GH, Zhang Y, Liu WC, Wang CL. Effects of processing parameters on microstructure and mechanical properties of squeeze-cast Mg–12Zn–4Al–0.5Ca alloy. Mater. Des., 2014, 63, 729.

[52]

Zhu SM, Easton MA, Abbott TB, et al. Evaluation of magnesium die-casting alloys for elevated temperature applications: Microstructure, tensile properties, and creep resistance. Metall. Mater. Trans. A, 2015, 46(8): 3543.

[53]

Xiao WL, Shen YS, Wang LD, et al. The influences of rare earth content on the microstructure and mechanical properties of Mg–7Zn–5Al alloy. Mater. Des., 2010, 31(7): 3542.

[54]

Gao X, Nie JF. Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scripta Mater., 2007, 56(8): 645.

[55]

Bettles CJ, Gibson MA, Venkatesan K. Enhanced age-hardening behaviour in Mg–4 wt.% Zn micro-alloyed with Ca. Scripta Mater., 2004, 51(3): 193.

[56]

Farahany S, Bakhsheshi-Rad HR, Idris MH, Kadir MRA, Lotfabadi AF, Ourdjini A. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems. Thermochim. Acta, 2012, 527, 180.

[57]

Naghdi F, Mahmudi R, Kang JY, Kim HS. Microstructure and high-temperature mechanical properties of the Mg–4Zn–0.5Ca alloy in the as-cast and aged conditions. Mater. Sci. Eng. A, 2016, 649, 441.

[58]

Ishiguro Y, Huang XS, Tsukada Y, Koyama T, Chino Y. Effect of bending and tension deformation on the texture evolution and stretch formability of Mg–Zn–RE–Zr alloy. Int. J. Miner. Metall. Mater., 2022, 29(7): 1334.

[59]

Tahreen N, Chen DL. A critical review of Mg–Zn–Y series alloys containing I, W, and LPSO phases. Adv. Eng. Mater., 2016, 18(12): 1983.

[60]

Xu ZC, Zhu C, Guo XF, Yang WP, Cui HB, Wang Y. Effect of multi-pass equal channel angular pressing on the microstructure and mechanical properties of a directional solidification Mg98.5Zn0.5Y1 alloy. Mater. Trans., 2019, 60(11): 2361.

[61]

M. Mehrabi-Mehdiabadi and R. Mahmudi, Effects of yttrium addition on microstructural stability and elevated-temperature mechanical properties of a cast Mg–Zn alloy, J. Alloys Compd., 820(2020), art. No. 153083.

[62]

Nie JF. Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A, 2012, 43(11): 3891.

[63]

Yuan S, Wang JH, Li XQ, Ma HB, Zhang L, Jin PP. Enhanced mechanical properties of Mg–1Al–12Y alloy containing long period stacking ordered phase. J. Magnes. Alloys, 2023, 11(12): 4679.

[64]

Hort N, Huang Y, Kainer KU. Intermetallics in magnesium alloys. Adv. Eng. Mater., 2006, 8(4): 235.

[65]

Chia TL, Easton MA, Zhu SM, Gibson MA, Birbilis N, Nie JF. The effect of alloy composition on the microstructure and tensile properties of binary Mg–rare earth alloys. Intermetallics, 2009, 17(7): 481.

[66]

Zhang JH, Liu HF, Sun W, Lu HY, Tang DX, Meng J. Influence of structure and ionic radius on solubility limit in the Mg–RE systems. Mater. Sci. Forum, 2007, 561–565, 143.

[67]

Wang J, Luo L, Huo QH, et al. Creep behaviors of a highly concentrated Mg–18 wt%Gd binary alloy with and without artificial aging. J. Alloys Compd., 2019, 774, 1036.

[68]

H.Y. Guo, S.H. Liu, L. Huang, D.Q. Wang, Y. Du, and M.Q. Chu, Thermal conductivity of As-cast and annealed Mg–RE binary alloys, Metals, 11(2021), No. 4, art. No. 554.

[69]

Zhu SM, Gibson MA, Easton MA, Nie JF. The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Mater., 2010, 63(7): 698.

[70]

Weiss D, Kaya AA, Aghion E, Eliezer D. Microstructure and creep properties of a cast Mg–1.7%wt rare earth–0.3%wt Mn alloy. J. Mater. Sci., 2002, 37(24): 5371.

[71]

Feng LY, Dong XX, Cai Q, Wang B, Ji SX. Effect of Nd on the microstructure and mechanical properties of Mg–La–Ce alloys at ambient and elevated temperatures. J. Mater. Eng. Perform., 2023, 32(6): 2598.

[72]

Natarajan AR, Solomon ELS, Puchala B, Marquis EA, Ven AV D. On the early stages of precipitation in dilute Mg–Nd alloys. Acta Mater., 2016, 108, 367.

[73]

Ping DH, Hono K, Nie JF. Atom probe characterization of plate-like precipitates in a Mg–RE–Zn–Zr casting alloy. Scripta Mater., 2003, 48(8): 1017.

[74]

Zhou YY, Fu PH, Peng LM, et al. Precipitation modification in cast Mg–1Nd–1Ce–Zr alloy by Zn addition. J. Magnes. Alloys, 2019, 7(1): 113.

[75]

Jun JH, Seong KD, Lee MH. Effect of zirconium on high temperature tensile properties of precipitation- hardened Mg–Nd–Zn casting alloy. Int. J. Mod. Phys. B, 2009, 23(06n07): 966.

[76]

S.H. Wang, J.L. Yang, J.Q. Pan, et al., Unveiling the mechanical response and deformation mechanism of extruded Mg–2.5Nd–0.5Zn–0.5Zr alloy sheet under high-temperature tensile, J. Alloys Compd., 911(2022), art. No. 164987.

[77]

Shao XH, Yang ZQ, Ma XL. Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater., 2010, 58(14): 4760.

[78]

Garces G, Perez P, Cabeza S, Kabra S, Gan W, Adeva P. Effect of extrusion temperature on the plastic deformation of an Mg–Y–Zn alloy containing LPSO phase using in situ neutron diffraction. Metall. Mater. Trans. A, 2017, 48(11): 5332.

[79]

Liu H, Huang H, Li C, Yang XW. Effects of Y content on mechanical properties of extruded Mg–Y–Zn alloys at room and elevated temperatures. Ordnance Mater. Sci. Eng., 2017, 40(2): 34.

[80]

Jin ZL, Wang QD, Zheng J, Ding WJ. Effects of Y content on microstructure and properties of Mg–Y–Zn–Zr alloy. Spec. Cast. Nonferrous Alloys, 2009, 29(7): 656.

[81]

Sun M, Wu GH, Wang W, Hou ZQ, Chen B, Ding WJ. Research progress of Mg–Gd alloy. Mater. Reports, 2009, 23(6): 98.

[82]

Zhan HZ. As-cast microstructures and properties of Mg–Gd alloy. Foundry Technol., 2018, 39(1): 54.

[83]

Ouyang SX, Yang GY, Qin H, Wang CH, Luo SF, Jie WQ. Effect of the precipitation state on high temperature tensile and creep behaviors of Mg–15Gd alloy. J. Magnes. Alloys, 2022, 10(12): 3459.

[84]

Liu K, Zhang JH, Rokhlin LL, Elkin FM, Tang DX, Meng J. Microstructures and mechanical properties of extruded Mg–8Gd–0.4Zr alloys containing Zn. Mater. Sci. Eng. A, 2009, 505(1–2): 13.

[85]

Li H, Du WB, Li SB, Wang ZH. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg–Zn–Er alloys. Mater. Des., 2012, 35, 259.

[86]

Cui SJ, Geng HR, Teng XY, Wu XW, Jia P, Wu C. Microstructure and mechanical properties of Mg–Er–Zn alloys with LPSO phase. Mater. Sci. Forum, 2017, 898, 53.

[87]

Hong LX, Wang RX, Zhang XB. Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults. Int. J. Miner. Metall. Mater., 2022, 29(8): 1570.

[88]

Wang LD, Xing CY, Hou XL, Wu YM, Sun JF, Wang LM. Microstructures and mechanical properties of as-cast Mg–5Y–3Nd–Zr–xGd (x = 0, 2 and 4wt.%) alloys. Mater. Sci. Eng. A, 2010, 527(7–8): 1891.

[89]

Ning ZL, Yi JY, Qian M, et al. Microstructure and elevated temperature mechanical and creep properties of Mg–4Y–3Nd–0.5Zr alloy in the product form of a large structural casting. Mater. Des., 2014, 60, 218.

[90]

R. Ma, S.H. Lv, Z.F. Xie, at al., Achieving high strength-ductility in a wrought Mg–9Gd–3Y–0.5Zr alloy by modifying with minor La addition, J. Alloys Compd., 884(2021), art. No. 161062.

[91]

Movahedi-Rad A, Mahmudi R. Effect of Ag addition on the elevated-temperature mechanical properties of an extruded high strength Mg–Gd–Y–Zr alloy. Mater. Sci. Eng. A, 2014, 614, 62.

[92]

X.H. Guan, W. Wang, T. Zhang, et al., A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg–Gd–Y–Zn–Zr alloy prepared by multi-pass friction stir processing, J. Magnes. Alloys, 2022. DOI: https://doi.org/10.1016/j.jma.2022.09.017

[93]

J.Y. Li, F.L. Wang, J. Zeng, et al., Decreasing the mechanical anisotropy of the forged Mg–8.5Gd–2.5Y–1.5Zn–0.5Zr alloy by modulating blocky LPSO particles using multi-directional forging, J. Magnes. Alloys, 2022. DOI: https://doi.org/10.1016/j.jma.2022.10.024.

[94]

He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ. Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250°C. J. Alloys Compd., 2006, 421(1–2): 309.

[95]

Nodooshan HRJ, Wu GH, Liu WC, Wei GL, Li YL, Zhang S. Effect of Gd content on high temperature mechanical properties of Mg–Gd–Y–Zr alloy. Mater. Sci. Eng. A, 2016, 651, 840.

[96]

Wang J, Meng J, Zhang DP, Tang DX. Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Mater. Sci. Eng. A, 2007, 456(1–2): 78.

[97]

Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scripta Mater., 2009, 61(6): 644.

[98]

Hou XL, Peng QM, Cao ZY, et al. Structure and mechanical properties of extruded Mg–Gd based alloy sheet. Mater. Sci. Eng. A, 2009, 520(1–2): 162.

[99]

Yu ZJ, Huang YD, Qiu X, et al. Fabrication of magnesium alloy with high strength and heat-resistance by hot extrusion and ageing. Mater. Sci. Eng. A, 2013, 578, 346.

[100]

Peng QM, Hou XL, Wang LD, Wu YM, Cao ZY, Wang LM. Microstructure and mechanical properties of high performance Mg–Gd based alloys. Mater. Des., 2009, 30(2): 292.

[101]

Liu XB, Chen RS, Han EH. Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd., 2008, 465(1–2): 232.

[102]

Chi YQ, Zheng MY, Xu C, et al. Effect of ageing treatment on the microstructure, texture and mechanical properties of extruded Mg–8.2Gd–3.8Y–1Zn–0.4Zr (wt%) alloy. Mater. Sci. Eng. A, 2013, 565, 112.

[103]

N. Wang, Q. Yang, X.L. Li, et al., Microstructures and mechanical properties of a Mg–9Gd–3Y–0.6Zn–0.4Zr (wt.%) alloy modified by Y-rich misch metal, Mater. Sci. Eng. A, 806(2021), art. No. 140609.

[104]

Xu C, Nakata T, Fan GH, Li XW, Tang GZ, Kamado S. Enhancing strength and creep resistance of Mg–Gd–Y–Zn–Zr alloy by substituting Mn for Zr. J. Magnes. Alloys, 2019, 7(3): 388.

[105]

N. Su, Y.J. Wu, Q.C. Deng, et al., Synergic effects of Gd and Y contents on the age-hardening response and elevated-temperature mechanical properties of extruded Mg–Gd(–Y)–Zn–Mn alloys, Mater. Sci. Eng. A, 810(2021), art. No. 141019.

[106]

Y. Feng, J.H. Zhang, P.F. Qin, et al., Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg–Er–Y–Zn alloy containing nano-spaced stacking faults, Mater. Charact., 155(2019), art. No. 109823.

[107]

D.P. Zhang, J.H. Zhang, Y.Q. Zhang, et al., Superior high-temperature strength in a low RE containing Mg extrusion alloy with nano-spaced stacking faults, Mater. Sci. Eng. A, 854(2022), art. No. 143791.

[108]

Liu L, Zhou XJ, Yu SL, et al. Effects of heat treatment on mechanical properties of an extruded Mg–4.3Gd–3.2Y–1.2Zn–0.5Zr alloy and establishment of its Hall–Petch relation. J. Magnes. Alloys, 2022, 10(2): 501.

[109]

Kuang J, Zhang YQ, Du XP, Zhang JY, Liu G, Sun J. On the strengthening and slip activity of Mg–3Al–1Zn alloy with pre-induced $\{101\bar{2}\}$ twins. J. Magnes. Alloys, 2023, 11(4): 1292.

[110]

X.J. Luo, H. Yang, J.X. Zhou, et al., Achieving outstanding heat-resistant Mg–Gd–Y–Zn–Mn alloy via introducing RE/Zn segregation on α-Mn nanoparticles, Scripta Mater., 236(2023), art. No. 115672.

[111]

Zhou JX, Yang H, Luo XJ, et al. Deformation behaviors and the related high-temperature mechanical properties of Mg–11Gd–5Y–2Zn–0.7Zr via regulating extrusion temperatures. J. Mater. Res. Technol., 2023, 26, 703.

[112]

Abazari S, Shamsipur A, Bakhsheshi-Rad HR, et al. Magnesium-based nanocomposites: A review from mechanical, creep and fatigue properties. J. Magnes. Alloys, 2023, 11(8): 2655.

[113]

Aydin F. Effect of solid waste materials on properties of magnesium matrix composites - A systematic review. J. Magnes. Alloys, 2022, 10(10): 2673.

[114]

Tong LB, Zhang QX, Jiang ZH, et al. Microstructures, mechanical properties and corrosion resistances of extruded Mg–Zn–Ca–xCe/La alloys. J. Mech. Behav. Biomed. Mater., 2016, 62, 57.

[115]

Yu LT, Zhao ZH, Tang CK, Li W, You C, Chen MF. The mechanical and corrosion resistance of Mg–Zn–Ca–Ag alloys: The influence of Ag content. J. Mater. Res. Technol., 2020, 9(5): 10863.

AI Summary AI Mindmap
PDF

478

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/