Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil

Chen Li, Wenhui Ma, Yang Li, Kuixian Wei

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1241-1248. DOI: 10.1007/s12613-023-2800-9
Research Article

Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil

Author information +
History +

Abstract

Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering. It involves systematic and theoretical engineering technology for utilizing planetary resources in situ. However, space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field, making the microstructure of lunar soil differ from that of minerals on the Earth. In this study, scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples. The microstructural characteristics of the lunar soil may drastically change its metallurgical performance. The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites, the amorphous layer caused by solar wind injection, and radiation tracks modified by high-energy particle rays inside mineral crystals. The nanophase iron presents a wide distribution, which may have a great impact on the electromagnetic properties of lunar soil. Hydrogen ions injected by solar wind may promote the hydrogen reduction process. The widely distributed amorphous layer and impact glass can promote the melting and diffusion process of lunar soil. Therefore, although high-energy events on the lunar surface transform the lunar soil, they also increase the chemical activity of the lunar soil. This is a property that earth samples and traditional simulated lunar soil lack. The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.

Keywords

space metallurgy / Chang’e-5 lunar soil / space weathering / metallurgical performance

Cite this article

Download citation ▾
Chen Li, Wenhui Ma, Yang Li, Kuixian Wei. Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1241‒1248 https://doi.org/10.1007/s12613-023-2800-9

References

[[1]]
P.O’ Brien and S. Byrne, Physical and chemical evolution of lunar mare regolith, J. Geophys. Res. Planets, 126(2021), No. 2, art. No. e2020JE006634.
[[2]]
Cannon KM, Dreyer CB, Sowers GF, et al.. Working with lunar surface materials: Review and analysis of dust mitigation and regolith conveyance technologies. Acta Astronaut., 2022, 196: 259,
CrossRef Google scholar
[[3]]
Pieters CM, Noble SK. Space weathering on airless bodies. J. Geophys. Res. Planets, 2016, 121(10): 1865, pmcid: 5975224
CrossRef Pubmed Google scholar
[[4]]
Tang H, Wang SJ, Li XY. Simulation of nanophase iron production in lunar space weathering. Planet. Space Sci., 2012, 60(1): 322,
CrossRef Google scholar
[[5]]
Noguchi T, Nakamura T, Kimura M, et al.. Incipient space weathering observed on the surface of Itokawa dust particles. Science, 2011, 333(6046): 1121,
CrossRef Pubmed Google scholar
[[6]]
Lucey PG, Riner MA. The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury. Icarus, 2011, 212(2): 451,
CrossRef Google scholar
[[7]]
Hiroi T, Abe M, Kitazato K, et al.. Developing space weathering on the asteroid 25143 Itokawa. Nature, 2006, 443(7107): 56,
CrossRef Pubmed Google scholar
[[8]]
Hapke B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res., 2001, 106(E5): 10039,
CrossRef Google scholar
[[9]]
Pieters CM, Taylor LA, Noble SK, et al.. Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteorit. Planet. Sci., 2000, 35(5): 1101,
CrossRef Google scholar
[[10]]
Liu Y, Taylor LA, Thompson JR, Schnare DW, Park JS. Unique properties of lunar impact glass: Nanophase metallic Fe synthesis. Am. Mineral., 2007, 92(8–9): 1420,
CrossRef Google scholar
[[11]]
T. Kadono, S. Sugita, N.K. Mitani, et al., Vapor clouds generated by laser ablation and hypervelocity impact, Geophys. Res. Lett., 29(2002), No. 20, art. No. 40-1.
[[12]]
Holsapple KA. The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci., 1993, 21: 333,
CrossRef Google scholar
[[13]]
Chaussidon M. Lunar water from the solar wind. Nat. Geosci., 2012, 5: 766,
CrossRef Google scholar
[[14]]
Basilevsky AT, Abdrakhimov AM, Dorofeeva VA. Water and other volatiles on the Moon: A review. Sol. Syst. Res., 2012, 46(2): 89,
CrossRef Google scholar
[[15]]
Anand M. Lunar water: A brief review. Earth Moon Planets, 2010, 107(1): 65,
CrossRef Google scholar
[[16]]
Landis GA. Materials refining on the Moon. Acta Astronaut., 2007, 60(10–11): 906,
CrossRef Google scholar
[[17]]
C. Li, K. Wei, Y. Li, et al., Theoretical calculation and experimental verification of the vacuum thermal decomposition process of lunar silicon oxide, Vacuum, 202(2022), art. No. 111162.
[[18]]
H.M. Sargeant, S.J. Barber, M. Anand, et al., Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon, Planet. Space Sci., 205(2021), art. No. 105287.
[[19]]
Li Q, Lin X, Luo Q, et al.. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. Int. J. Miner. Metall. Mater., 2022, 29(1): 32,
CrossRef Google scholar
[[20]]
Shi RJ, Wang ZD, Qiao LJ, Pang XL. Effect of in situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel. Int. J. Miner. Metall. Mater., 2021, 28(4): 644,
CrossRef Google scholar
[[21]]
Zhang JL, Schenk J, Liu ZJ, Li KJ. Editorial for special issue on hydrogen metallurgy. Int. J. Miner. Metall. Mater., 2022, 29(10): 1817,
CrossRef Google scholar
[[22]]
Zhang JL, Li Y, Liu ZJ, et al.. Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen. Int. J. Miner. Metall. Mater., 2022, 29(10): 1830,
CrossRef Google scholar
[[23]]
Tang J, Chu MS, Li F, Feng C, Liu ZG, Zhou YS. Development and progress on hydrogen metallurgy. Int. J. Miner. Metall. Mater., 2020, 27(6): 713,
CrossRef Google scholar
[[24]]
Li C, Wei KX, Li Y, et al.. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. J. Rare Earths, 2023, 41(9): 1429,
CrossRef Google scholar
[[25]]
Y. Zhong, J.X. Low, Q. Zhu, et al., In situ resource utilization of lunar soil for highly efficient extraterrestrial fuel and oxygen supply, Natl. Sci. Rev., 10(2022), No. 2, art. No. nwac200.
[[26]]
C. Li, H. Hu, M.F. Yang, et al., Characteristics of the lunar samples returned by the Chang’E-5 mission, Natl. Sci. Rev., 9(2022), No. 2, art. No. nwab188.
[[27]]
Bale CW, Chartrand P, Degterov SA, et al.. FactSage thermochemical software and databases. Calphad, 2002, 26(2): 189,
CrossRef Google scholar
[[28]]
Bale CW, Bélisle E, Chartrand P, et al.. Reprint of: FactSage thermochemical software and databases, 2010–2016. Calphad, 2016, 55: 1,
CrossRef Google scholar
[[29]]
C. Li, Y. Li, K.X. Wei, et al., Study on surface characteristics of Chang’E-5 fine grained lunar soil, Sci. Sin. Phys. Mech. Astron., 53(2023), No. 3, art. No. 239603.
[[30]]
Sasaki S, Nakamura K, Hamabe Y, Kurahashi E, Hiroi T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 2001, 410(6828): 555,
CrossRef Pubmed Google scholar
[[31]]
Anand M, Taylor LA, Nazarov MA, Shu J, Mao HK, Hemley RJ. Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proc. Natl. Acad. Sci. USA, 2004, 101(18): 6847, pmcid: 406430
CrossRef Pubmed Google scholar
[[32]]
L.X. Gu, Y.J. Chen, Y.C. Xu, et al., Space weathering of the chang’e-5 lunar sample from a mid-high latitude region on the Moon, Geophys. Res. Lett., 49(2022), No. 7, art. No. e2022GL097875.
[[33]]
Li C, Guo Z, Li Y, et al.. Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample. Nat. Astron., 2022, 6: 1156,
CrossRef Google scholar
[[34]]
Z. Guo, C. Li, Y. Li, et al., Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E-5 lunar soil: Implications for thermal effects during impacts, Geophys. Res. Lett., 49(2022), No. 5, art. No. e2021GL097323.
[[35]]
Bogani L, Cavigli L, de Julián Fernández C, et al.. Photocoercivity of nano-stabilized Au: Fe superparamagnetic nanoparticles. Adv. Mater., 2010, 22(36): 4054,
CrossRef Pubmed Google scholar
[[36]]
Zhang J, Post M, Veres T, et al.. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J. Phys. Chem. B, 2006, 110(14): 7122,
CrossRef Pubmed Google scholar
[[37]]
Li Y. In situ investigation of the valence states of iron-bearing phases in Chang’E-5 lunar soil using FIB, AES, and TEM-EELS techniques. At. Spectrosc., 2022, 43(1): 53,
CrossRef Google scholar
[[38]]
Lakshika P, Kenichiro M, Kateřina F, David K, Antti P, Tomáš K. Simulation of space weathering on asteroid spectra through hydrogen ion and laser irradiation of meteorites. Planet. Sci. J., 2023, 4(4): 72,
CrossRef Google scholar
[[39]]
Young CL, Poston MJ, Wray JJ, Hand KP, Carlson RW. The mid-IR spectral effects of darkening agents and porosity on the silicate surface features of airless bodies. Icarus, 2019, 321: 71,
CrossRef Google scholar
[[40]]
W. Agosto, Beneficiation and powder metallurgical processing of lunar soil metal, [in] 4th Space Manufacturing; Proceedings of the Fifth Conference, Princeton, 1981, p. 3263.
[[41]]
Agosto WN. Lunar Beneficiation, NASA. Johnson Space Center, Space Resources, 1992, 3: 153
[[42]]
Agosto WN. Electrostatic separation and sizing of ilmenite in lunar soil simulants and samples. Lunar Planet. Sci., 1984, 15: 1
[[43]]
Agosto WN. Electrostatic separation of binary comminuted mineral mixtures. Space Manuf., 1983, 53: 315

Accesses

Citations

Detail

Sections
Recommended

/