Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement

Yikai Liu, Yunmin Wang, Qiusong Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1480-1499. DOI: 10.1007/s12613-023-2799-y
Invited Review

Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement

Author information +
History +

Abstract

Phosphogypsum (PG), a hard-to-dissipate by-product of the phosphorus fertilizer production industry, places strain on the biogeochemical cycles and ecosystem functions of storage sites. This pervasive problem is already widespread worldwide and requires careful stewardship. In this study, we review the presence of potentially toxic elements (PTEs) in PG and describe their associations with soil properties, anthropogenic activities, and surrounding organisms. Then, we review different ex-/in-situ solutions for promoting the sustainable management of PG, with an emphasis on in-situ cemented paste backfill, which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG. However, concerns related to the PTEs’ retention capacity and long-term effectiveness limit the implementation of this strategy. Furthermore, given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO2 emissions, the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China’s Carbon Neutrality Economy. Therefore, we discuss the ways by which we can integrate innovative strategies, including supplementary cementitious materials, alternative binder solutions, CO2 mineralization, CO2 curing, and optimization of the supply chain for the profitability and sustainability of PG remediation. However, to maximize the co-benefits in environmental, social, and economic, future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.

Keywords

cemented paste backfill / phosphogypsum / carbon dioxide mitigation / potentially toxic elements / solidification and stabilization

Cite this article

Download citation ▾
Yikai Liu, Yunmin Wang, Qiusong Chen. Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1480‒1499 https://doi.org/10.1007/s12613-023-2799-y

References

[1]
Bisone S, Gautier M, Chatain V, Blanc D. Spatial distribution and leaching behavior of pollutants from phosphogypsum stocked in a gypstack: Geochemical characterization and modeling. J. Environ. Manage., 2017, 193: 567,
CrossRef Google scholar
[2]
J.M. Wang, Utilization effects and environmental risks of phosphogypsum in agriculture: A review, J. Clean. Prod., 276(2020), art. No. 123337.
[3]
Tonini D, Saveyn HGM, Huygens D. Environmental and health co-benefits for advanced phosphorus recovery. Nat. Sustain., 2019, 2: 1051,
CrossRef Google scholar
[4]
U.S. Geological Survey, Mineral Commodity Summaries 2022, U.S. Geological Survey, 2022, https://doi.org/10.3133/MCS2022.
[5]
L.F.O. Silva, M.L.S. Oliveira, T.J. Crissien, et al., A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles, Chemosphere, 286(2022), art. No. 131513.
[6]
F.W. Zhao, J.H. Hu, Y.N. Yang, H.X. Xiao, and F.C. Ma, Cross-scale study on lime modified phosphogypsum cemented backfill by fractal theory, Minerals, 12(2022), No. 4, art. No. 403.
[7]
Nikolaev AI, Petrov VB, Pleshakov YV, Bychenya YG, Kadyrova GI. Dephosphorization of a sphene concentrate with dilute mineral acids. Theor. Found. Chem. Eng., 2007, 41(5): 730,
CrossRef Google scholar
[8]
El Zrelli R, Rabaoui L, Daghbouj N, et al.. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): High mining potential and implications for environmental protection. Environ. Sci. Pollut. Res., 2018, 25(15): 14690,
CrossRef Google scholar
[9]
Y. Chernysh, O. Yakhnenko, V. Chubur, and H. Roubík, Phosphogypsum recycling: A review of environmental issues, current trends, and prospects, Appl. Sci., 11(2021), No. 4, art. No. 1575.
[10]
Cordell D, Drangert JO, White S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change, 2009, 19(2): 292,
CrossRef Google scholar
[11]
Scholz RW, Wellmer FW. Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus?. Glob. Environ. Change, 2013, 23(1): 11,
CrossRef Google scholar
[12]
C.E. Nedelciu, K.V. Ragnarsdottir, P. Schlyter, and I. Stjernquist, Global phosphorus supply chain dynamics: Assessing regional impact to 2050, Glob. Food Secur., 26(2020), art. No. 100426.
[13]
Lei Y, Zhu QW, Chen HX, Wang MM. Development and application of phosphogypsum in plasterboard. Mater. Sci., 2019, 9(1): 69
[14]
Abril JM, García-Tenorio R, Periáñez R, Enamorado SM, Andreu L, Delgado A. Occupational dosimetric assessment (inhalation pathway) from the application of phosphogypsum in agriculture in South West Spain. J. Environ. Radioact., 2009, 100(1): 29,
CrossRef Google scholar
[15]
Soares JR, Cantarella H, de Campos Menegale ML. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol. Biochem., 2012, 52: 82,
CrossRef Google scholar
[16]
B.X. Li, L. Li, X. Chen, Y. Ma, and M.K. Zhou, Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder, Constr. Build. Mater., 338(2022), art. No. 127630.
[17]
Yang L, Zhang YS, Yan Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. J. Clean. Prod., 2016, 127: 204,
CrossRef Google scholar
[18]
Bagade MA, Satone S R. An experimental investigation of partial replacement of cement by various percentage of Phosphogypsum in cement concrete. Int. J. Eng. Res. Appl., 2012, 2(4): 785
[19]
Liu SH, Wang L, Yu BY. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement. Constr. Build. Mater., 2019, 214: 9,
CrossRef Google scholar
[20]
Li XB, Du J, Gao L, et al.. Immobilization of phosphogypsum for cemented paste backfill and its environmental effect. J. Clean. Prod., 2017, 156: 137,
CrossRef Google scholar
[21]
Y.K. Liu, Q.S. Chen, M.C. Dalconi, et al., Retention of phosphorus and fluorine in phosphogypsum for cemented paste backfill: Experimental and numerical simulation studies, Environ. Res., 214(2022), art. No. 113775.
[22]
Cánovas CR, Chapron S, Arrachart G, Pellet-Rostaing S. Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials. J. Clean. Prod., 2019, 219: 225,
CrossRef Google scholar
[23]
Bao WJ, Zhao HT, Li HQ, Li SG, Lin WG. Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure. J. CO2 Util., 2017, 17: 125,
CrossRef Google scholar
[24]
Hou DY, O’Connor D, Igalavithana AD, et al.. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ., 2020, 1: 366,
CrossRef Google scholar
[25]
Saadaoui E, Ghazel N, Ben Romdhane C, Massoudi N. Phosphogypsum: Potential uses and problems–A review. Int. J. Environ. Stud., 2017, 74(4): 558,
CrossRef Google scholar
[26]
Rashad AM. Phosphogypsum as a construction material. J. Clean. Prod., 2017, 166: 732,
CrossRef Google scholar
[27]
Cánovas CR, Macías F, Pérez-López R, Basallote MD, Millán-Becerro R. Valorization of wastes from the fertilizer industry: Current status and future trends. J. Clean. Prod., 2018, 174: 678,
CrossRef Google scholar
[28]
J. Podgorski and M. Berg, Global analysis and prediction of fluoride in groundwater, Nat. Commun., 13(2022), No. 1, art. No. 4232.
[29]
Wang M, Li X, He WY, et al.. Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China. Environ.Pollut., 2019, 249: 423,
CrossRef Google scholar
[30]
R.N. Lieberman, M. Izquierdo, P. Córdoba, et al., The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications, Sci. Total Environ., 700(2020), art. No. 134444.
[31]
Allibone R, Cronin SJ, Charley DT, Neall VE, Stewart RB, Oppenheimer C. Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: A novel exposure pathway. Environ. Geochem. Health, 2012, 34(2): 155,
CrossRef Google scholar
[32]
S.T. Zhou, X.B. Li, Y.N. Zhou, C.D. Min, and Y. Shi, Effect of phosphorus on the properties of phosphogypsum-based cemented backfill, J. Hazard. Mater., 399(2020), art. No. 122993.
[33]
L. Hermann, F. Kraus, and R. Hermann, Phosphorus processing—Potentials for higher efficiency, Sustainability, 10(2018), No. 5, art. No. 1482.
[34]
Y.H. Xie, J.Q. Huang, H.Q. Wang, et al., Simultaneous and efficient removal of fluoride and phosphate in phosphogypsum leachate by acid-modified sulfoaluminate cement, Chemosphere, 305(2022), art. No. 135422.
[35]
S.Y. Zhang, Y.L. Zhao, H.X. Ding, J.P. Qiu, and Z.B. Guo, Recycling flue gas desulfurisation gypsum and phosphogypsum for cemented paste backfill and its acid resistance, Constr. Build. Mater., 275(2021), art. No. 122170.
[36]
Chen QS, Sun SY, Liu YK, Qi CC, Zhou HB, Zhang QL. Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill. Int. J. Miner. Metall. Mater., 2021, 28(9): 1440,
CrossRef Google scholar
[37]
I.V. Fornés, D. Vaičiukynienė, D. Nizevičienė, V. Doroševas, and B. Michalik, A comparative assessment of the suitability of phosphogypsum from different origins to be utilised as the binding material of construction products, J. Build. Eng., 44(2021), art. No. 102995.
[38]
B. Gracioli, C. Angulski da Luz, C.S. Beutler, et al., Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements, Constr. Build. Mater., 262(2020), art. No. 119961.
[39]
Lu T, Wang WS, Wei ZA, Yang YH, Cao GS. Experimental study on static and dynamic mechanical properties of phosphogypsum. Environ. Sci. Pollut. Res. Int., 2021, 28(14): 17468,
CrossRef Google scholar
[40]
Liu YQ, Guo DW, Dong L, Xu Y, Liu JC. Pollution status and environmental sound management (ESM) trends on typical general industrial solid waste. Procedia Environ. Sci., 2016, 31: 615,
CrossRef Google scholar
[41]
Xia M, Muhammad F, Zeng LH, et al.. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J. Clean. Prod., 2019, 209: 1206,
CrossRef Google scholar
[42]
Chen QS, Zhang QL, Fourie A, Xin C. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill. J. Environ. Manage., 2017, 201: 19,
CrossRef Google scholar
[43]
Chen QS, Zhang QL, Qi CC, Fourie A, Xiao CC. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact. J. Clean. Prod., 2018, 186: 418,
CrossRef Google scholar
[44]
Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A. Environmental impact and management of phosphogypsum. J. Environ. Manage., 2009, 90(8): 2377,
CrossRef Google scholar
[45]
Liang H, Zhang P, Jin Z, DePaoli D. Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production. Miner. Metall. Process., 2017, 34(3): 146
[46]
Hentati O, Abrantes N, Caetano AL, et al.. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J. Hazard. Mater., 2015, 294: 80,
CrossRef Google scholar
[47]
Y.K. Liu, Q.L. Zhang, Q.S. Chen, C.C. Qi, Z. Su, and Z.D. Huang, Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill, Minerals, 9(2019), No. 3, art. No. 175.
[48]
Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412.
[49]
W.X. Cao, W. Yi, J.H. Peng, J. Li, and S.H. Yin, Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature, J. Build. Eng., 45(2022), art. No. 103511.
[50]
Zhang DY, Luo HM, Zheng LW, et al.. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. J. Hazard. Mater., 2012, 241–242: 418,
CrossRef Google scholar
[51]
Y. Shi, L. Cheng, M. Tao, S.S. Tong, X.J. Yao, and Y.F. Liu, Using modified quartz sand for phosphate pollution control in cemented phosphogypsum (PG) backfill, J. Clean. Prod., 283(2021), art. No. 124652.
[52]
J.J. Chen, C. Wei, J.Y. Ran, X.D. Su, W. Wang, and J. Zhang, Functional hydrophobic coating for phosphogypsum via stoichiometric silanization, hydrophobic characterization, microstructure analysis, and durability evaluation, Constr. Build. Mater., 347(2022), art. No. 128560.
[53]
Q. Cai, J. Jiang, B. Ma, et al., Efficient removal of phosphate impurities in waste phosphogypsum for the production of cement, Sci. Total Environ., 780(2021), art. No. 146600.
[54]
Huang YQ, Lu JX, Chen FX, Shui ZH. The chloride permeability of persulphated phosphogypsum-slag cement concrete. J. Wuhan Univ. Technol. Mater Sci Ed, 2016, 31(5): 1031,
CrossRef Google scholar
[55]
Y.T. Liu, D.R. Zhang, L.Y. You, H. Luo, and W. Xu, Recycling phosphogypsum in subbase of pavement: Treatment, testing, and application, Constr. Build. Mater., 342(2022), art. No. 127948.
[56]
L.L. Zeng, X. Bian, L. Zhao, Y.J. Wang, and Z.S. Hong, Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China, Geomech. Energy Environ., 25(2021), art. No. 100195.
[57]
Degirmenci N, Okucu A, Turabi A. Application of phosphogypsum in soil stabilization. Build. Environ., 2007, 42(9): 3393,
CrossRef Google scholar
[58]
Çoruh S, Ergun ON. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. J. Hazard. Mater., 2010, 173(1–3): 468,
CrossRef Google scholar
[59]
Degirmenci N. The using of waste phosphogypsum and natural gypsum in adobe stabilization. Constr. Build. Mater., 2008, 22(6): 1220,
CrossRef Google scholar
[60]
Değirmenci N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Constr. Build. Mater., 2008, 22(8): 1857,
CrossRef Google scholar
[61]
Çoruh S, Elevli S, Şenel G, Ergun ON. Adsorption of silver from aqueous solution onto fly ash and phosphogypsum using full factorial design. Environ. Prog. Sustain. Energy, 2011, 30(4): 609,
CrossRef Google scholar
[62]
H. Garbaya, A. Jraba, M.A. Khadimallah, and E. Elaloui, The development of a new phosphogypsum-based construction material: A study of the physicochemical, mechanical and thermal characteristics, Materials, 14(2021), No. 23, art. No. 7369.
[63]
Zmemla R, Sdiri A, Naifar I, Benjdidia M, Elleuch B. Tunisian phosphogypsum tailings: Assessment of leaching behavior for an integrated management approach. Environ. Eng. Res., 2020, 25(3): 345,
CrossRef Google scholar
[64]
Zemni S, Hajji M, Triki M, M’nif A, Hamzaoui AH. Study of phosphogypsum transformation into calcium silicate and sodium sulfate and their physicochemical characterization. J. Clean. Prod., 2018, 198: 874,
CrossRef Google scholar
[65]
P. Bhawan, A. Nagar, Hazardous Waste Management Series: HAZWAMS, Central Pollution Control Board (Ministry of Environment & Forest), 2010 [2022-12-6]. https://studylib.net/doc/18127268/hazardous-waste-management-series
[66]
Raut SP, Patil US, Madurwar MV. Utilization of phosphogypsum and rice husk to develop sustainable bricks. Mater. Today Proc., 2022, 60: 595,
CrossRef Google scholar
[67]
Katamine NM. Phosphate waste in mixtures to improve their deformation. J. Transp. Eng., 2000, 126(5): 382,
CrossRef Google scholar
[68]
Rentería-Villalobos M, Vioque I, Mantero J, Manjón G. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. J. Hazard. Mater., 2010, 181(1–3): 193,
CrossRef Google scholar
[69]
S. Meskini, A. Samdi, H. Ejjaouani, and T. Remmal, Valorization of phosphogypsum as a road material: Stabilizing effect of fly ash and lime additives on strength and durability, J. Clean. Prod., 323(2021), art. No. 129161.
[70]
Ennaciri Y, El Alaoui-Belghiti H, Bettach M. Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum. J. Mater. Res. Technol., 2019, 8(3): 2586,
CrossRef Google scholar
[71]
Essabir H, Nekhlaoui S, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss AEK. Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: Structural, mechanical and thermal properties. J. Polym. Environ., 2017, 25(3): 658,
CrossRef Google scholar
[72]
S. El Issiouy, A. Atbir, S. Mançour-Billah, R. Bellajrou, L. Boukbir, and M. El Hadek, Thermal treatment of Moroccan phosphogypsum, MATEC Web Conf., 3(2013), art. No. 01030.
[73]
Taher MA. Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resour. Conserv. Recycl., 2007, 52(1): 28,
CrossRef Google scholar
[74]
El-Didamony H, Gado HS, Awwad NS, Fawzy MM, Attallah MF. Treatment of phosphogypsum waste produced from phosphate ore processing. J. Hazard. Mater., 2013, 244–245: 596,
CrossRef Google scholar
[75]
Contreras M, Pérez-López R, Gázquez MJ, et al.. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration. Waste Manage., 2015, 45: 412,
CrossRef Google scholar
[76]
Romero-Hermida MI, Borrero-López AM, Alejandre FJ, et al.. Phosphogypsum waste lime as a promising substitute of commercial limes: A rheological approach. Cem. Concr. Compos., 2019, 95: 205,
CrossRef Google scholar
[77]
Cárdenas-Escudero C, Morales-Flórez V, Pérez-López R, Santos A, Esquivias L. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J. Hazard. Mater., 2011, 196: 431,
CrossRef Google scholar
[78]
Romero-Hermida I, Santos A, Pérez-López R, García-Tenorio R, Esquivias L, Morales-Flórez V. New method for carbon dioxide mineralization based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products. J. CO2 Util., 2017, 18: 15,
CrossRef Google scholar
[79]
López FA, Gázquez M, Alguacil FJ, Bolívar JP, García-Díaz I, López-Coto I. Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization. J. Hazard. Mater., 2011, 192(1): 234
[80]
M.I. Romero-Hermida, A.M. Borrero-López, V. Flores-Alés, et al., Characterization and analysis of the carbonation process of a lime mortar obtained from phosphogypsum waste, Int. J. Environ. Res. Public Health, 18(2021), No. 12, art. No. 6664.
[81]
J.L. Guerrero, S.M. Pérez-Moreno, F. Mosqueda, M.J. Gázquez, and J.P. Bolivar, Radiological and physico-chemical characterization of materials from phosphoric acid production plant to assess the workers radiological risks, Chemosphere, 253(2020), art. No. 126682.
[82]
Li X, Zhu GY, Gong XK, Li SP, Xu W, Li HQ. Occurrence of the impurities in phosphorus rock and the research of acidolysis process. Spectrosc. Spectral Anal., 2019, 39(4): 1288
[83]
Abouzeid AZM. Physical and thermal treatment of phosphate ores—An overview. Int. J. Miner. Process., 2008, 85(4): 59,
CrossRef Google scholar
[84]
W. Xu, B. Shi, Y. Tian, et al., Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China, Minerals, 11(2021), No. 11, art. No. 1249.
[85]
Li Z, Wang FW, Bai TS, et al.. Lead immobilization by geological fluorapatite and fungus Aspergillus niger. J. Hazard. Mater, 2016, 320: 386,
CrossRef Google scholar
[86]
C. Ren, Y.F. Li, Q. Zhou, and W. Li, Phosphate uptake by calcite: Constraints of concentration and pH on the formation of calcium phosphate precipitates, Chem. Geol., 579(2021), art. No. 120365.
[87]
A. Rubio-Ordóñez, O. García-Moreno, L.M.R. Terente, J. García-Guinea, and L. Tormo, Chondrite shock metamorphism history assessed by non-destructive analyses on Ca-phosphates and feldspars in the cangas de onís regolith breccia, Minerals, 9(2019), No. 7, art. No. 417.
[88]
Y.K. Liu, Q.S. Chen, M.C. Dalconi, et al., Enhancing the sustainable immobilization of phosphogypsum by cemented paste backfill with the activation of γ-Al2O3, Constr. Build. Mater., 347(2022), art. No. 128624.
[89]
Y.B. Jiang, K.D. Kwon, S.F. Wang, C. Ren, and W. Li, Molecular speciation of phosphorus in phosphogypsum waste by solid-state nuclear magnetic resonance spectroscopy, Sci. Total Environ., 696(2019), art. No. 133958.
[90]
S.F. Cui, Y.Z. Fu, B.Q. Zhou, et al., Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil, Chemosphere, 278(2021), art. No. 130432.
[91]
J.C. Xiang, J.P. Qiu, P.K. Zheng, X.G. Sun, Y.L. Zhao, and X.W. Gu, Usage of biowashing to remove impurities and heavy metals in raw phosphogypsum and calcined phosphogypsum for cement paste preparation, Chem. Eng. J., 451(2023), art. No. 138594.
[92]
X.B. Li and Q. Zhang, Dehydration behaviour and impurity change of phosphogypsum during calcination, Constr. Build. Mater., 311(2021), art. No. 125328.
[93]
Ennaciri Y, Zdah I, El Alaoui-Belghiti H, Bettach M. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem. Eng. Commun., 2020, 207(3): 382,
CrossRef Google scholar
[94]
Tafu M, Chohji T. Reaction between calcium phosphate and fluoride in phosphogypsum. J. Eur. Ceram. Soc., 2006, 26(4–5): 767,
CrossRef Google scholar
[95]
Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608.
[96]
Wang JF, Chen JG, Dallimore C, Yang HQ, Dai ZH. Spatial distribution, fractions, and potential release of sediment phosphorus in the Hongfeng Reservoir, southwest China. Lake Reservoir Manage., 2015, 31: 214,
CrossRef Google scholar
[97]
Cronin SJ, Manoharan V, Hedley MJ, Loganathan P. Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. N Z J. Agric. Res., 2000, 43(3): 295,
CrossRef Google scholar
[98]
An J, Lee HA, Lee J, Yoon HO. Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea. Chemosphere, 2015, 119: 577,
CrossRef Google scholar
[99]
S. Wu, X.L. Yao, Y.G. Yao, et al., Recycling phosphogypsum as the sole calcium oxide source in calcium sulfoaluminate cement production and solidification of phosphorus, Sci. Total Environ., 808(2022), art. No. 152118.
[100]
Álvarez-Ayuso E, Giménez A, Ballesteros JC. Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum. J. Hazard. Mater., 2011, 192(3): 1659,
CrossRef Google scholar
[101]
Rai K, Agarwal M, Dass S, Shrivastav R. Fluoride: Diffusive mobility in soil and some remedial measures to control its plant uptake. Curr. Sci., 2000, 79: 1370
[102]
Peng CY, Xu XF, Ren YF, et al.. Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: A systematic review. J. Sci. Food Agric., 2021, 101(2): 379,
CrossRef Google scholar
[103]
Al Attar L, Al-Oudat M, Shamali K, Abdul Ghany B, Kanakri S. Case study: Heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles. Environ. Technol., 2012, 33(2): 143,
CrossRef Google scholar
[104]
N. Makete, M. Rizzu, G. Seddaiu, L. Gohole, and A. Otinga, Fluoride toxicity in cropping systems: Mitigation, adaptation strategies and related mechanisms. A review, Sci. Total Environ., 833(2022), art. No. 155129.
[105]
A. El Kateb, C. Stalder, A. Rüggeberg, C. Neururer, J.E. Spangenberg, and S. Spezzaferri, Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia), PLoS One, 13(2018), No. 5, art. No. e0197731.
[106]
Hébert MP, Fugère V, Gonzalez A. The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Front. Ecol. Environ., 2019, 17(1): 48,
CrossRef Google scholar
[107]
Feng Y, Yang QX, Chen QS, et al.. Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO. J. Clean. Prod., 2019, 232: 1112,
CrossRef Google scholar
[108]
Guo ZB, Qiu JP, Jiang HQ, Zhang SY, Ding HX. Improving the performance of superfine-tailings cemented paste backfill with a new blended binder. Powder Technol., 2021, 394: 149,
CrossRef Google scholar
[109]
Dooley K, Nicholls Z, Meinshausen M. Carbon removals from nature restoration are no substitute for steep emission reductions. One Earth, 2022, 5(7): 812,
CrossRef Google scholar
[110]
F.H. Wu, Y.C. Ren, G.F. Qu, et al., Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum, J. Environ. Manage., 313(2022), art. No. 114957.
[111]
S.F. Lütke, M.L.S. Oliveira, L.F.O. Silva, T.R.S. Cadaval, and G.L. Dotto, Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry, Chemosphere, 256(2020), art. No. 127138.
[112]
Walawalkar M, Nichol CK, Azimi G. Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy, 2016, 166: 195,
CrossRef Google scholar
[113]
Ou ZY, Li JH, Wang ZS. Application of mechanochemistry to metal recovery from second-hand resources: A technical overview. Environ. Sci. Processes Impacts, 2015, 17(9): 1522,
CrossRef Google scholar
[114]
Li SC, Malik M, Azimi G. Extraction of rare earth elements from phosphogypsum using mineral acids: Process development and mechanistic investigation. Ind. Eng. Chem. Res., 2022, 61(1): 102,
CrossRef Google scholar
[115]
B.R.S. Calderón-Morales, A. García-Martínez, P. Pineda, and R. García-Tenório, Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction, J. Build. Eng., 44(2021), art. No. 102506.
[116]
Huang YB, Qian JS, Liu CZ, et al.. Influence of phosphorus impurities on the performances of calcium sulfoaluminate cement. Constr. Build. Mater., 2017, 149: 37,
CrossRef Google scholar
[117]
Rashad AM. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J. Clean. Prod., 2015, 87: 717,
CrossRef Google scholar
[118]
M. Amrani, Y. Taha, A. Kchikach, M. Benzaazoua, and R. Hakkou, Phosphogypsum recycling: New horizons for a more sustainable road material application, J. Build. Eng., 30(2020), art. No. 101267.
[119]
H.H. Qi, B.G. Ma, H.B. Tan, Y. Su, W.D. Lu, and Z.H. Jin, Influence of fluoride ion on the performance of PCE in hemihydrate gypsum pastes, J. Build. Eng., 46(2022), art. No. 103582.
[120]
Tian T, Yan Y, Hu ZH, Xu YY, Chen YP, Shi J. Utilization of original phosphogypsum for the preparation of foam concrete. Constr. Build. Mater., 2016, 115: 143,
CrossRef Google scholar
[121]
R.P. Costa, M.H.G. de Medeiros, E.D. Rodriguez Martinez, V.A. Quarcioni, S. Suzuki, and A.P. Kirchheim, Effect of soluble phosphate, fluoride, and pH in Brazilian phosphogypsum used as setting retarder on Portland cement hydration, Case Stud. Constr. Mater., 17(2022), art. No. e01413.
[122]
R. Zhu, C.W. Ye, H. Xiang, et al., Study on the material characteristics and barrier mechanism of magnesium potassium phosphate cement/hydroxyapatite cutoff walls for fluoride contamination in phosphogypsum waste stacks, Constr. Build. Mater., 347(2022), art. No. 128469.
[123]
Matveeva VA, Smirnov YD, Suchkov DV. Industrial processing of phosphogypsum into organomineral fertilizer. Environ. Geochem. Health, 2022, 44(5): 1605,
CrossRef Google scholar
[124]
X. Peng, Y.E. Deng, L. Liu, et al., The addition of biochar as a fertilizer supplement for the attenuation of potentially toxic elements in phosphogypsum-amended soil, J. Clean. Prod., 277(2020), art. No. 124052.
[125]
M.B. Outbakat, K. El Mejahed, M. El Gharous, K. El Omari, and A. Beniaich, Effect of phosphogypsum on soil physical properties in Moroccan salt-affected soils, Sustainability, 14(2022), No. 20, art. No. 13087.
[126]
Qi J, Zhu H, Zhou P, et al.. Application of phosphogypsum in soilization: A review. Int. J. Environ. Sci. Technol., 2023, 20(9): 10449,
CrossRef Google scholar
[127]
Nayak AK, Mishra VK, Sharma DK, et al.. Efficiency of phosphogypsum and mined gypsum in reclamation and productivity of rice–wheat cropping system in sodic soil. Commun. Soil Sci. Plant Anal., 2013, 44(5): 909,
CrossRef Google scholar
[128]
Bennett J McL, Cattle SR, Singh B. The efficacy of lime, gypsum and their combination to ameliorate sodicity in irrigated cropping soils in the Lachlan valley of new South Wales. Arid Land Res. Manage., 2015, 29(1): 17,
CrossRef Google scholar
[129]
Lofrano G, Libralato G, Minetto D, et al.. In situ remediation of contaminated marinesediment: An overview. Environ. Sci. Pollut. Res. Int., 2017, 24(6): 5189,
CrossRef Google scholar
[130]
Chen QY, Tyrer M, Hills CD, Yang XM, Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manage., 2009, 29(1): 390,
CrossRef Google scholar
[131]
Guo B, Liu B, Yang J, Zhang SG. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manage., 2017, 193: 410,
CrossRef Google scholar
[132]
Wang Y, Wang ZQ, Wu AX, et al.. Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives. Int. J. Miner. Metall. Mater., 2023, 30(2): 193,
CrossRef Google scholar
[133]
Q.S. Chen, Q. Zhang, Y.M. Wang, Q.L. Zhang, and Y.K. Liu, Highly-efficient fluoride retention in on-site solidification/stabilization of phosphogypsum: Cemented paste backfill synergizes with poly-aluminum chloride activation, Chemosphere, 309(2022), art. No. 136652.
[134]
X.L. Xue, Y.X. Ke, Q. Kang, et al., Cost-effective treatment of hemihydrate phosphogypsum and phosphorous slag as cemented paste backfill material for underground mine, Adv. Mater. Sci. Eng., 2019(2019), art. No. 9087538.
[135]
H.F. Liu, J.X. Zhang, B.Y. Li, et al., Long term leaching behavior of arsenic from cemented paste backfill made of construction and demolition waste: Experimental and numerical simulation studies, J. Hazard. Mater., 416(2021), art. No. 125813.
[136]
Yilmaz E, Belem T, Benzaazoua M. Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill. Eng. Geol., 2014, 168: 23,
CrossRef Google scholar
[137]
Y.K. Liu, Q.S. Chen, Y.M. Wang, et al., In situ remediation of phosphogypsum with water-washing pre-treatment using cemented paste backfill: Rheology behavior and damage evolution, Materials, 14(2021), No. 22, art. No. 6993.
[138]
X.B. Li, Y.N. Zhou, Y. Shi, and Q.Q. Zhu, Fluoride immobilization and release in cemented PG backfill and its influence on the environment, Sci. Total Environ., 869(2023), art. No. 161548.
[139]
Chen QS, Zhou HL, Wang YM, Wang DL, Zhang QL, Liu YK. Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle. Int. J. Miner. Metall. Mater., 2023, 30(8): 1608,
CrossRef Google scholar
[140]
Y.K. Liu, P.S. Wang, M.C. Dalconi, et al., The sponge effect of phosphogypsum-based cemented paste backfill in the atmospheric carbon capture: Roles of fluorides, phosphates, and alkalinity, Sep. Purif. Technol., 315(2023), art. No. 123702.
[141]
H.B. Tan, F.B. Zou, M. Liu, B.G. Ma, Y.L. Guo, and S.W. Jian, Effect of the adsorbing behavior of phosphate retarders on hydration of cement paste, J. Mater. Civ. Eng., 29(2017), No. 9, art. No. 04017088.
[142]
R.J. Wu and J.C. Liu, Removal of phosphate using ettringite synthesized from industrial by-products, Water Air Soil Pollut., 229(2018), No. 6, art. No. 185.
[143]
Gomes AFS, Lopez DL, Ladeira ACQ. Characterization and assessment of chemical modifications of metal-bearing sludges arising from unsuitable disposal. J. Hazard. Mater., 2012, 199–200: 418,
CrossRef Google scholar
[144]
Park JY, Byun HJ, Choi WH, Kang WH. Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater. Chemosphere, 2008, 70(8): 1429,
CrossRef Google scholar
[145]
Wang L, Yu KQ, Li JS, et al.. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chem. Eng. J., 2018, 351: 418,
CrossRef Google scholar
[146]
Zavarin M, Chang E, Wainwright H, et al.. Community data mining approach for surface complexation database development. Environ. Sci. Technol., 2022, 56(4): 2827,
CrossRef Google scholar
[147]
J. Helser and V. Cappuyns, Trace elements leaching from PbZn mine waste (Plombières, Belgium) and environmental implications, J. Geochem. Explor., 220(2021), art. No. 106659.
[148]
J.J. Dijkstra, R.N.J. Comans, J. Schokker, and M.J. van der Meulen, The geological significance of novel anthropogenic materials: Deposits of industrial waste and by-products, Anthropocene, 28(2019), art. No. 100229.
[149]
Y. Liu, S. Molinari, M.C. Dalconi, et al., Mechanistic insights into Pb and sulfates retention in ordinary Portland cement and aluminous cement: Assessing the contributions from binders and solid waste, J. Hazard. Mater., 458(2023), art. No. 131849.
[150]
Ölmez H, Erdem E. The effects of phosphogypsum on the setting and mechanical properties of Portland cement and trass cement. Cem. Concr. Res., 1989, 19(3): 377,
CrossRef Google scholar
[151]
Singh M, Garg M, Rehsi SS. Purifying phosphogypsum for cement manufacture. Constr. Build. Mater., 1993, 7(1): 3,
CrossRef Google scholar
[152]
Al-Hwaiti MS. Assessment of the radiological impacts of treated phosphogypsum used as the main constituent of building materials in Jordan. Environ. Earth Sci., 2015, 74(4): 3159,
CrossRef Google scholar
[153]
Singh M, Garg M, Verma CL, Handa SK, Kumar R. An improved process for the purification of phosphogypsum. Constr. Build. Mater., 1996, 10(8): 597,
CrossRef Google scholar
[154]
Smadi MM, Haddad RH, Akour AM. Potential use of phosphogypsum in concrete. Cem. Concr. Res., 1999, 29(9): 1419,
CrossRef Google scholar
[155]
Mohan A, Mini KM. Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS. Constr. Build. Mater., 2018, 171: 919,
CrossRef Google scholar
[156]
X. Huang, J.S. Li, W.H. Jiang, et al., Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier, Sci. Total Environ., 838(2022), art. No. 155925.
[157]
Q.S. Chen, P.S. Wang, Y.M. Wang, et al., Fluorides immobilization through calcium aluminate cement-based backfill: Accessing the detailed leaching characterization under torrential rainfall, Environ. Res., 238(2023), art. No. 117229.
[158]
I.H. Shah, S.A. Miller, D. Jiang, and R.J. Myers, Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons, Nat. Commun., 13(2022), No. 1, art. No. 5758.
[159]
Miller SA, Habert G, Myers RJ, Harvey JT. Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth, 2021, 4(10): 1398,
CrossRef Google scholar
[160]
Habert G, Miller SA, John VM, et al.. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ., 2020, 1: 559,
CrossRef Google scholar
[161]
J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408.
[162]
de Kleijne K, Hanssen SV, van Dinteren L, Huijbregts MAJ, van Zelm R, de Coninck H. Limits to Paris compatibility of CO2 capture and utilization. One Earth, 2022, 5(2): 168,
CrossRef Google scholar
[163]
F. Wang, J.D. Harindintwali, Z. Yuan, et al., Technologies and perspectives for achieving carbon neutrality, The Innovation, 2(2021), No. 4.
[164]
Liu Z, Deng Z, He G, et al.. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ., 2021, 3(2): 141,
CrossRef Google scholar
[165]
H.G. Nie, R. Kemp, and Y. Fan, Investigating the adoption of energy-saving measures in residential sector: The contribution to carbon neutrality of China and Europe, Resour. Conserv. Recycl., 190(2023), art. No. 106791.
[166]
L. Wang, L. Chen, D.C.W. Tsang, et al., Biochar as green additives in cement-based composites with carbon dioxide curing, J. Clean. Prod., 258(2020), art. No. 120678.
[167]
Wang DL, Chen ML, Tsang DCW. Hou DY. Green remediation by using low-carbon cement-based stabilization/solidification approaches. Sustainable Remediation of Contaminated Soil and Groundwater, 2020 Amsterdam Elsevier 93,
CrossRef Google scholar
[168]
Huang Y, Lin ZS. Investigation on phosphogypsum–steel slag–granulated blast-furnace slag–limestone cement. Constr. Build. Mater., 2010, 24(7): 1296,
CrossRef Google scholar
[169]
C.D. Min, Y. Shi, and Z.X. Liu, Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag, Constr. Build. Mater., 305(2021), art. No. 124786.
[170]
Z.Y. Wang, Z.H. Shui, T. Sun, X.S. Li, and M.Z. Zhang, Recycling utilization of phosphogypsum in eco excess-sulphate cement: Synergistic effects of metakaolin and slag additives on hydration, strength and microstructure, J. Clean. Prod., 358(2022), art. No. 131901.
[171]
L. Chen, Y.S. Wang, L. Wang, et al., Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement, J. Hazard. Mater., 408(2021), art. No. 124404.
[172]
Y. Feng, Q.S. Chen, Y.L. Zhou, et al., Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity, Constr. Build. Mater., 240(2020), art. No. 117970.
[173]
J. Skocek, M. Zajac, and M. Ben Haha, Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete, Sci. Rep., 10(2020), No. 1, art. No. 5614.
[174]
J.C. Li, J. Chang, T. Wang, T. Zeng, J.Y. Li, and J.X. Zhang, Effects of phosphogypsum on hydration properties and strength of calcium aluminate cement, Constr. Build. Mater., 347(2022), art. No. 128398.
[175]
T. Watari, Z. Cao, S. Hata, and K. Nansai, Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions, Nat. Commun., 13(2022), No. 1, art. No. 4158.
[176]
James J, Arthi C, Balaji G, Chandraleka N, Naveen Kumar RHM. Lime activated flyash-phosphogypsum blend as a low-cost alternative binder. Int. J. Environ. Sci. Technol., 2022, 19(9): 8969,
CrossRef Google scholar
[177]
J. Matsimbe, M. Dinka, D. Olukanni, and I. Musonda, Geopolymer: A systematic review of methodologies, Materials, 15(2022), No. 19, art. No. 6852.
[178]
S. Contessi, L. Calgaro, M.C. Dalconi, et al., Stabilization of lead contaminated soil with traditional and alternative binders, J. Hazard. Mater., 382(2020), art. No. 120990.
[179]
Hua SD, Wang KJ, Yao X, Xu W, He YX. Effects of fibers on mechanical properties and freeze-thaw resistance of phosphogypsum-slag based cementitious materials. Constr. Build. Mater., 2016, 121: 290,
CrossRef Google scholar
[180]
Pan SY, Chen YH, Fan LS, et al.. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nat. Sustain., 2020, 3: 399,
CrossRef Google scholar
[181]
Snæbjörnsdóttir S, Sigfússon B, Marieni C, Goldberg D, Gislason SR, Oelkers EH. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ., 2020, 1(2): 90,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/