Vertically aligned montmorillonite aerogel–encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
Qijing Guo, Cong Guo, Hao Yi, Feifei Jia, Shaoxian Song
Vertically aligned montmorillonite aerogel–encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
The conversion and storage of photothermal energy using phase change materials (PCMs) represent an optimal approach for harnessing clean and sustainable solar energy. Herein, we encapsulated polyethylene glycol (PEG) in montmorillonite aerogels (3D-Mt) through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs. When used as a support matrix, 3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG. Simultaneously, 3D-Mt/PEG demonstrates outstanding shape retention, increased thermal energy storage density, and commendable thermal and chemical stability. The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating–cooling cycles. Furthermore, the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels, facilitating efficient phonon transfer. This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction. This study addresses the shortcomings of PCMs, including the issues of leakage and inadequate flame retardancy. It achieves the development and design of 3D-Mt/PEG with ultrahigh strength, superior flame retardancy, and directional heat transfer. Therefore, this work offers a design strategy for the preparation of high-performance composite PCMs. The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
montmorillonite aerogel / polyethylene glycol / phase change materials / solar thermal energy storage / flame retardant
[[1]] |
|
[[2]] |
|
[[3]] |
Z.D. Tang, H.Y. Gao, X. Chen, Y.F. Zhang, A. Li, and G. Wang, Advanced multifunctional composite phase change materials based on photo-responsive materials, Nano Energy, 80(2021), art. No. 105454.
|
[[4]] |
H.Y. Wu, S.T. Li, Y.W. Shao, et al., Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability, Chem. Eng. J., 379(2020), art. No. 122373.
|
[[5]] |
Q.J. Guo, H. Yi, F.F. Jia, and S.X. Song, Design of MoS2/MMT bi-layered aerogels integrated with phase change materials for sustained and efficient solar desalination, Desalination, 541(2022), art. No. 116028.
|
[[6]] |
B.Y. Gong, H.C. Yang, S.H. Wu, et al., Phase change material enhanced sustained and energy-efficient solar-thermal water desalination, Appl. Energy, 301(2021), art. No. 117463.
|
[[7]] |
S. Aghakhani, A. Ghaffarkhah, M. Arjmand, N. Karimi, and M. Afrand, Phase change materials: Agents towards energy performance improvement in inclined, vertical, and horizontal walls of residential buildings, J. Build. Eng., 56(2022), art. No. 104656.
|
[[8]] |
S.R.L. da Cunha and J.L.B. de Aguiar, Phase change materials and energy efficiency of buildings: A review of knowledge, J. Energy Storage, 27(2020), art. No. 101083.
|
[[9]] |
Q.R. Zhang, T.T. Xue, J. Tian, Y. Yang, W. Fan, and T.X. Liu, Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation, Compos. Sci. Technol., 226(2022), art. No. 109541.
|
[[10]] |
K.Y. Sun, H.S. Dong, Y. Kou, et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications, Chem. Eng. J., 419(2021), art. No. 129637.
|
[[11]] |
|
[[12]] |
|
[[13]] |
J. Luo, D.Q. Zou, Y.S. Wang, S. Wang, and L. Huang, Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review, Chem. Eng. J., 430(2022), art. No. 132741.
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
Z. Sun, L.J. Zhao, H.X. Wan, H. Liu, D.Z. Wu, and X.D. Wang, Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors, Chem. Eng. J., 396(2020), art. No. 125317.
|
[[28]] |
Z. Zhang, Z. Zhang, T. Chang, J. Wang, X. Wang, and G.F. Zhou, Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in situ polymerization, Chem. Eng. J., 428(2022), art. No. 131164.
|
[[29]] |
|
[[30]] |
|
[[31]] |
H. Yi, Z. Ai, Y.L. Zhao, X. Zhang, and S.X. Song, Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage, Sol. Energy Mater. Sol. Cells, 204(2020), art. No. 110233.
|
[[32]] |
|
[[33]] |
M. Cheng, J. Hu, J.Q. Xia, et al., One-step in situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material, Chem. Eng. J., 431(2022), art. No. 133935.
|
[[34]] |
Q.J. Guo, Q. An, H. Yi, F.F. Jia, and S.X. Song, Double-layered montmorillonite/MoS2 aerogel with vertical channel for efficient and stable solar interfacial desalination, Appl. Clay Sci., 217(2022), art. No. 106389.
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
H. Yi, L. Xia, and S.X. Song, Three-dimensional montmorillonite/Ag nanowire aerogel supported stearic acid as composite phase change materials for superior solar-thermal energy harvesting and storage, Compos. Sci. Technol., 217(2022), art. No. 109121.
|
[[39]] |
|
[[40]] |
|
[[41]] |
E. Tao, D. Ma, S.Y. Yang, and X. Hao, Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater, J. Alloys Compd., 832(2020), art. No. 154833.
|
[[42]] |
|
[[43]] |
W. Wang, T. Wen, and H.Y. Bai, Adsorption toward Cu(II) and inhibitory effect on bacterial growth occurring on molybdenum disulfide-montmorillonite hydrogel surface, Chemosphere, 248(2020), art. No. 126025.
|
[[44]] |
|
[[45]] |
|
[[46]] |
H.H. Liao, W.H. Chen, Y. Liu, and Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability, Compos. Sci. Technol., 189(2020), art. No. 108010.
|
[[47]] |
|
[[48]] |
|
[[49]] |
|
[[50]] |
|
[[51]] |
J.M. Gao, S.J. Ma, B. Wang, Z.B. Ma, Y.X. Guo, and F.Q. Cheng, Template-free facile preparation of mesoporous silica from fly ash for shaped composite phase change materials, J. Cleaner Prod., 384 (2023), art. No. 135583.
|
[[52]] |
Y. Wang, Y.H. Song, S. Li, T. Zhang, D.Y. Zhang, and P.R. Guo, Thermophysical properties of three-dimensional palygorskite based composite phase change materials, Appl. Clay Sci., 184(2020), art. No. 105367.
|
[[53]] |
|
[[54]] |
|
[[55]] |
C.J. Han, H.Z. Gu, M.J. Zhang, A. Huang, Y. Zhang, and Y. Wang, Al–Si@Al2O3@mullite microcapsules for thermal energy storage: Preparation and thermal properties, Sol. Energy Mater. Sol. Cells, 217(2020), art. No. 110697.
|
[[56]] |
H. Yi, W.Q. Zhan, Y.L. Zhao, et al., Design of MtNS/SA microencapsulated phase change materials for enhancement of thermal energy storage performances: Effect of shell thickness, Sol. Energy Mater. Sol. Cells, 200(2019), art. No. 109935.
|
[[57]] |
A.M. Turan and Y. Konuklu, Developing of capric acid@cole-manite doped melamine formaldehyde microcapsules and composites as novel thermal energy storage materials, Therm. Sci. Eng. Prog., 41(2023), art. No. 101806.
|
[[58]] |
L.Q. Wang, W.D. Liang, Y. Liu, et al., Carbonized clay pectin-based aerogel for light-to-heat conversion and energy storage, Appl. Clay Sci., 224 (2022), art. No. 106524.
|
[[59]] |
J.H. Zhu, Q. An, Q.J. Guo, H. Yi, L. Xia, and S.X. Song, Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management, Appl. Clay Sci., 223(2022), art. No. 106511.
|
[[60]] |
|
[[61]] |
|
[[62]] |
R.M. Nair, B. Bindhu, and V.L. Reena, A polymer blend from Gum Arabic and sodium alginate-preparation and characterization, J. Polym. Res., 27(2020), No. 6, art. No. 154.
|
[[63]] |
|
/
〈 | 〉 |