Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics

Chengzhi Xu, Hongyu Yang, Hongcheng Yang, Linzhuang Xing, Yuan Wang, Zhimin Li, Enzhu Li, Guorui Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (8) : 1935-1943. DOI: 10.1007/s12613-023-2791-6
Research Article

Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics

Author information +
History +

Abstract

A glass frit containing Li2O–MgO–ZnO–B2O3–SiO2 component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa2O6 ceramics in this study. The good low-firing effects are presented due to the high matching relevance between Li2O–MgO–ZnO–B2O3–SiO2 glass and MgTa2O6 ceramics. The pure tri-rutile MgTa2O6 structure remains unchanged, and high sintering compactness can also be achieved at 1150°C. We found that the Li2O–MgO–ZnO–B2O3–SiO2 glass not only greatly improves the low-temperature sintering characteristics of MgTa2O6 ceramics but also maintains a high (quality factor (Q) × resonance frequency (f)) value while still improving the temperature stability. Typically, great microwave dielectric characteristics when added with 2wt% Li2O–MgO–ZnO–B2O3–SiO2 glass can be achieved at 1150°C: dielectric constant, ε r = 26.1; Q × f = 34267 GHz; temperature coefficient of resonance frequency, τ f = −8.7 × 10−6 /°C.

Keywords

MgTa2O6 / ceramic / microwave dielectric characteristics / glass

Cite this article

Download citation ▾
Chengzhi Xu, Hongyu Yang, Hongcheng Yang, Linzhuang Xing, Yuan Wang, Zhimin Li, Enzhu Li, Guorui Zhao. Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(8): 1935‒1943 https://doi.org/10.1007/s12613-023-2791-6

References

[[1]]
Wu FF, Zhou D, Du C, et al.. Temperature stable Sm(Nb1−xVx)O4 (0.0 ≤ x ≤ 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C, 2021, 9(31): 9962,
CrossRef Google scholar
[[2]]
H.C. Xiang, J. Kilpijärvi, S. Myllymäki, H.T. Yang, L. Fang, and H. Jantunen, Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5GHz Wi-Fi antennas, Appl. Mater. Today, 21(2020), art. No. 100826.
[[3]]
Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: A review. Int. Mater. Rev., 2008, 53(2): 57,
CrossRef Google scholar
[[4]]
Wu FF, Zhou D, Du C, et al.. Design of a sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1−xBix)NbO4 (x = 0–0.15) microwave dielectric ceramics. ACS Appl. Mater. Interfaces, 2022, 14(5): 7030,
CrossRef Pubmed Google scholar
[[5]]
Yang H, Zhang S, Yang H, et al.. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram., 2021, 10(5): 885,
CrossRef Google scholar
[[6]]
Lee HJ, Hong KS, Kim IT. Crystal structure and microwave dielectric properties of M(NbxTa1−x)2O6 solid solution (M = Mg or Zn). J. Mater. Res., 1997, 12(6): 1437,
CrossRef Google scholar
[[7]]
Kim ES, Jeon CJ. Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics. J. Adv. Dielectr., 2011, 1(1): 127,
CrossRef Google scholar
[[8]]
Wu HT, Jiang YS, Yue YL. Low-temperature synthesis and microwave dielectric properties of trirutile-structure MgTa2O6 ceramics by aqueous sol–gel process. Ceram. Int., 2012, 38(6): 5151,
CrossRef Google scholar
[[9]]
Fu BJ, Zhang YC, Su XL, Liu YH, Hong M. Effects of CuO addition on the microstructure and microwave dielectric properties of MgTa2O6 ceramics. Key Eng. Mater., 2012, 512–515: 1222,
CrossRef Google scholar
[[10]]
Yang HY, Chai L, Liang GC, et al.. Structure, far-infrared spectroscopy, microwave dielectric properties, and improved low-temperature sintering characteristics of tri-rutile Mg0.5Ti0.5TaO4 ceramics. J. Adv. Ceram., 2023, 12(2): 296,
CrossRef Google scholar
[[11]]
Yang HY, Chai L, Wang YC, Xing MJ, Chen YW, Li EZ. Matching correlation study of titanium-based ceramics with glass based on dissolution characteristics. J. Eur. Ceram. Soc., 2022, 42(13): 5778,
CrossRef Google scholar
[[12]]
Valant M, Suvorov D, Pullar RC, Sarma K, Alford NM. A mechanism for low-temperature sintering. J. Eur. Ceram. Soc., 2006, 26(13): 2777,
CrossRef Google scholar
[[13]]
Toby BH. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr., 2001, 34(2): 210,
CrossRef Google scholar
[[14]]
Larson AC, Von Dreele RB. . General Structure Analysis System (GSAS), 2004 Washington, DC U.S. Department of Energy
[[15]]
Takada T, Wang SF, Yoshikawa S, Jang SJ, Newnham RE. Effect of glass additions on BaO–TiO2–WO3 microwave ceramics. ChemInform, 1994, 25(7): 1909
[[16]]
Yang HY, Zhang SR, Yang HC, Zhang X, Li EZ. Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4−(1−x)Zn0.15Nb0.3Ti0.55O2 ceramics. Inorg. Chem., 2018, 57(14): 8264,
CrossRef Pubmed Google scholar
[[17]]
Nenasheva EA, Redozubov SS, Kartenko NF, Gaidamaka IM. Microwave dielectric properties and structure of ZnO–Nb2O5–TiO2 ceramics. J. Eur. Ceram. Soc., 2011, 31(6): 1097,
CrossRef Google scholar
[[18]]
Fan XC, Chen XM, Liu XQ. Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: Crystal structure refinement and infrared reflectivity study. Chem. Mater., 2008, 20(12): 4092,
CrossRef Google scholar
[[19]]
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A, 1976, 32(5): 751,
CrossRef Google scholar
[[20]]
Yuan ZQ, Liu B, Liu XQ, Chen XM. Structure and microwave dielectric characteristics of Sr(La1−xSmx)2Al2O7 ceramics. RSC Adv., 2016, 6(98): 96229,
CrossRef Google scholar
[[21]]
Kim ES, Jeon CJ, Clem PG. Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics. J. Am. Ceram. Soc., 2012, 95(9): 2934,
CrossRef Google scholar
[[22]]
Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Crystallogr., Sect. B, 1991, 47(2): 192,
CrossRef Google scholar
[[23]]
Tian HR, Zheng JJ, Liu LT, et al.. Structure characteristics and microwave dielectric properties of Pr2(Zr1−xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient. J. Mater. Sci. Technol., 2022, 116: 121,
CrossRef Google scholar
[[24]]
Yang HY, Li EZ, Yang HC, He HC, Zhang RS. Synthesis of Zn0.5Ti0.5NbO4 microwave dielectric ceramics with Li2O–B2O3–SiO2 glass for LTCC application. Int. J. Appl. Glass Sci., 2018, 9(3): 392,
CrossRef Google scholar
[[25]]
Xie LS, Zhong CW, Fang ZX, Zhao Y, Tang B, Zhang SR. Microwave dielectric properties of Li2O–xMgO–ZnO–B2O3–SiO2 glass-ceramics (x = 30–50 wt.%). J. Ceram. Soc. Jpn, 2018, 126(3): 163,
CrossRef Google scholar
[[26]]
Tseng CF. Microwave dielectric properties of low loss microwave dielectric ceramics: A0.5Ti0.5NbO4 (A = Zn, Co). J. Eur. Ceram. Soc., 2014, 34(15): 3641,
CrossRef Google scholar
[[27]]
Yang HY, Li EZ, Yang YF, Shi Y, He HC, Zhang SR. Co2O3 substitution effects on the structure and microwave dielectric properties of low-firing (Zn0.9Mg0.1)TiO3 ceramics. Ceram. Int., 2018, 44(5): 5010,
CrossRef Google scholar
[[28]]
Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys., 1993, 73(1): 348,
CrossRef Google scholar
[[29]]
Zhou D, Fan XQ, Jin XW, He DW, Chen GH. Structures, phase transformations, and dielectric properties of BiTaO4 ceramics. Inorg. Chem., 2016, 55(22): 11979,
CrossRef Pubmed Google scholar
[[30]]
Yang HY, Zhang SR, Yang HC, Yuan Y, Li EZ. Intrinsic dielectric properties of columbite ZnNb2O6 ceramics studied by P–V–L bond theory and Infrared spectroscopy. J. Am. Ceram. Soc., 2019, 102(9): 5365,
CrossRef Google scholar
[[31]]
Kim ES, Chun BS, Freer R, Cernik RJ. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc., 2010, 30(7): 1731,
CrossRef Google scholar
[[32]]
Bao J, Zhang YP, Kimura H, Wu HT, Yue ZX. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1−xTix)3(MoO4)9 ceramics. J. Adv. Ceram., 2023, 12(1): 82,
CrossRef Google scholar
[[33]]
H. Tian, X. Zhou, T. Jiang, et al., Bond characteristics and microwave dielectric characteristics of (Mn1/3Sb2/3)4+ doped molyb-date based low-temperature sintering ceramics, J. Alloys Compd., 906(2022), art. No. 164333.
[[34]]
Fang ZX, Tang B, Si F, Zhang SR. Low temperature sintering of high permittivity Ca–Li–Nd–Ti microwave dielectric ceramics with BaCu(B2O5) additives. J. Alloys Compd., 2017, 693: 843,
CrossRef Google scholar
[[35]]
Bosman AJ, Havinga EE. Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev., 1963, 129(4): 1593,
CrossRef Google scholar
[[36]]
Dang MZ, Lin HX, Yao XG, et al.. Effects of B2O3 and MgO on the microwave dielectric properties of MgTa2O6 ceramics. Ceram. Int., 2019, 45(18): 24244,
CrossRef Google scholar
[[37]]
Huang CL, Chiang KH, Huang CY. Microwave dielectric properties and microstructures of MgTa2O6 ceramics with CuO addition. Mater. Chem. Phys., 2005, 90(2–3): 373,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/