Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics
Chengzhi Xu, Hongyu Yang, Hongcheng Yang, Linzhuang Xing, Yuan Wang, Zhimin Li, Enzhu Li, Guorui Zhao
Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics
A glass frit containing Li2O–MgO–ZnO–B2O3–SiO2 component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa2O6 ceramics in this study. The good low-firing effects are presented due to the high matching relevance between Li2O–MgO–ZnO–B2O3–SiO2 glass and MgTa2O6 ceramics. The pure tri-rutile MgTa2O6 structure remains unchanged, and high sintering compactness can also be achieved at 1150°C. We found that the Li2O–MgO–ZnO–B2O3–SiO2 glass not only greatly improves the low-temperature sintering characteristics of MgTa2O6 ceramics but also maintains a high (quality factor (Q) × resonance frequency (f)) value while still improving the temperature stability. Typically, great microwave dielectric characteristics when added with 2wt% Li2O–MgO–ZnO–B2O3–SiO2 glass can be achieved at 1150°C: dielectric constant, ε r = 26.1; Q × f = 34267 GHz; temperature coefficient of resonance frequency, τ f = −8.7 × 10−6 /°C.
MgTa2O6 / ceramic / microwave dielectric characteristics / glass
[[1]] |
|
[[2]] |
H.C. Xiang, J. Kilpijärvi, S. Myllymäki, H.T. Yang, L. Fang, and H. Jantunen, Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5GHz Wi-Fi antennas, Appl. Mater. Today, 21(2020), art. No. 100826.
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
H. Tian, X. Zhou, T. Jiang, et al., Bond characteristics and microwave dielectric characteristics of (Mn1/3Sb2/3)4+ doped molyb-date based low-temperature sintering ceramics, J. Alloys Compd., 906(2022), art. No. 164333.
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
/
〈 | 〉 |