Synergistic strengthening mechanism of Ca2+-sodium silicate to selective separation of feldspar and quartz
Bo Lin, Jingzhong Kuang, Yiqiang Yang, Zheyu Huang, Delong Yang, Mingming Yu
Synergistic strengthening mechanism of Ca2+-sodium silicate to selective separation of feldspar and quartz
Inhibitors are important for flotation separation of quartz and feldspar. In this study, a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp. Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments. And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism. The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca2+ and SS in sequence under the optimal proportion of 1:5. A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired, and was found to be 90.70wt% and 83.70%, respectively. It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared (FT-IR) and adsorption capacity tests. The results of X-ray photoelectron spectroscopy (XPS) indicated that Ca2+ directly interacts with the surface of quartz to increase the adsorption of collectors. In contrast, the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na+ and Ca2+ taking the place of K+, resulting in the composite inhibitor forms a hydrophilic structure, which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site. The combination of Ca2+ and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector, thus achieving the effect of efficient separation. A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
feldspar / quartz / Ca2+-sodium silicate / selective adsorption / flotation separation
[[1]] |
|
[[2]] |
|
[[3]] |
S.Y. Lin, R.Q. Liu, Y.H. Hu, et al., Optimize flotation process of Mo-Bi sulfide ore for cleaner production, J. Cleaner Prod., 291(2021), art. No. 125236.
|
[[4]] |
|
[[5]] |
B. Yang, S.H. Cao, Z.L. Zhu, et al., Selective flotation separation of apatite from dolomite utilizing a novel eco-friendly and efficient depressant for sustainable manufacturing of phosphate fertilizer, J. Cleaner Prod., 286(2021), art. No. 124949.
|
[[6]] |
Z.J. Wang, H.Q. Wu, Y.B. Xu, et al., Effect of dissolved fluorite and barite species on the flotation and adsorption behavior of bastnaesite, Sep. Purif. Technol., 237(2020), art. No. 116387.
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
X.S. Jiang, J. Chen, B.Y. Ban, W.F. Song, C. Chen, and X.Y. Yang, Application of competitive adsorption of ethylenediamine and polyetheramine in direct float of quartz from quartz-feldspar mixed minerals under neutral pH conditions, Miner. Eng., 188(2020), art. No. 107850.
|
[[15]] |
|
[[16]] |
A. Molifie, M. Becker, S. Geldenhuys, and B. McFadzean, Investigating the reasons for the improvement in flotation grade and recovery of an altered PGE ore when using sodium silicate, Miner. Eng., 195(2023), art. No. 108024.
|
[[17]] |
|
[[18]] |
|
[[19]] |
J.F. He, H. Chen, M.M. Zhang, et al., Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz, Colloids Surf. A, 643(2022), art. No. 128702.
|
[[20]] |
|
[[21]] |
G.C. Gong, P. Wang, J. Liu, Y.X. Han, and Y.M. Zhu, Effect and mechanism of Cu(II) on flotation separation of cassiterite from fluorite, Sep. Purif. Technol., 238(2020), art. No. 116401.
|
[[22]] |
P.M.S. Carvalho, S. Pessanha, J. Machado, et al., Energy dispersive X-ray fluorescence quantitative analysis of biological samples with the external standard method, Spectrochim. Acta, Part B, 174(2020), art. No. 105991.
|
[[23]] |
|
[[24]] |
S.Y. Zhang, J.Z. Kuang, M.M. Yu, W.Q. Yuan, and Z.Y. Huang, Effect of ultrasonication of sodium silicate on selective adsorption of scheelite and fluorite surfaces, Colloids Surf. A, 642(2022), art. No. 128633.
|
[[25]] |
|
[[26]] |
Y. Guo, B. Yang, Z.K. Fu, and S.L. Ren, Enhancing the floatability of smithsonite mixed with silicate minerals by using a novel dispersant of cetylpyridinium bromide, Miner. Eng., 185(2022), art. No. 107711.
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
R.Q. Xie, Y.M. Zhu, J. Liu, X. Wang, and Y.J. Li, Differential collecting performance of a new complex of decyloxy-propylamine and α-bromododecanoic acid on flotation of spodumene and feldspar, Miner. Eng., 153(2020), art. No. 106377.
|
[[32]] |
|
[[33]] |
Y.F. Wang, S. Ahmed Khoso, X.M. Luo, and M.J. Tian, Understanding the depression mechanism of citric acid in sodium oleate flotation of Ca2+-activated quartz: Experimental and DFT study, Miner. Eng., 140(2019), art. No. 105878.
|
/
〈 | 〉 |