Research progress of CO2 capture and mineralization based on natural minerals

Chenguang Qian, Chunquan Li, Peng Huang, Jialin Liang, Xin Zhang, Jifa Wang, Jianbing Wang, Zhiming Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1208-1227. DOI: 10.1007/s12613-023-2785-4
Invited Review

Research progress of CO2 capture and mineralization based on natural minerals

Author information +
History +

Abstract

Natural minerals, such as kaolinite, halloysite, montmorillonite, attapulgite, bentonite, sepiolite, forsterite, and wollastonite, have considerable potential for use in CO2 capture and mineralization due to their abundant reserves, low cost, excellent mechanical properties, and chemical stability. Over the past decades, various methods, such as those involving heat, acid, alkali, organic amine, amino silane, and ionic liquid, have been employed to enhance the CO2 capture performance of natural minerals to attain high specific surface area, a large number of pore structures, and rich active sites. Future research on CO2 capture by natural minerals will focus on the full utilization of the properties of natural minerals, adoption of suitable modification methods, and preparation of composite materials with high specific surface area and rich active sites. In addition, we provide a summary of the principle and technical route of direct and indirect mineralization of CO2 by natural minerals. This process uses minerals with high calcium and magnesium contents, such as forsterite (Mg2SiO4), serpentine [Mg3Si2O(OH)4], and wollastonite (CaSiO3). The research status of indirect mineralization of CO2 using hydrochloric acid, acetic acid, molten salt, and ammonium salt as media is also introduced in detail. The recovery of additives and high-value-added products during the mineralization process to increase economic benefits is another focus of future research on CO2 mineralization by natural minerals.

Keywords

natural mineral / carbon dioxide capture / modification / composite material / carbon dioxide mineralization

Cite this article

Download citation ▾
Chenguang Qian, Chunquan Li, Peng Huang, Jialin Liang, Xin Zhang, Jifa Wang, Jianbing Wang, Zhiming Sun. Research progress of CO2 capture and mineralization based on natural minerals. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1208‒1227 https://doi.org/10.1007/s12613-023-2785-4

References

[1]
Bereiter B, Eggleston S, Schmitt J, et al.. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett., 2015, 42(2): 542,
CrossRef Google scholar
[2]
Reddy MSB, Ponnamma D, Sadasivuni KK, Kumar B, Abdullah AM. Carbon dioxide adsorption based on porous materials. RSC Adv., 2021, 11(21): 12658,
CrossRef Google scholar
[3]
Raupach MR, Marland G, Ciais P, et al.. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA, 2007, 104(24): 10288,
CrossRef Google scholar
[4]
Blamey J, Anthony EJ, Wang J, Fennell PS. The calcium looping cycle for large-scale CO2 capture. Prog. Energy Combust. Sci., 2010, 36(2): 260,
CrossRef Google scholar
[5]
Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science, 2011, 333(6041): 418,
CrossRef Google scholar
[6]
Hu MJ, Yin MZ, Hu LW, Liu PJ, Wang S, Ge JB. High-value utilization of CO2 to synthesize sulfur-doped carbon nanofibers with excellent capacitive performance. Int. J. Miner. Metall. Mater., 2020, 27(12): 1666,
CrossRef Google scholar
[7]
Cao MQ, Liu K, Zhou HM, et al.. Hierarchical TiO2 nanorods with a highly active surface for photocatalytic CO2 reduction. J. Cent. South Univ., 2019, 26(6): 1503,
CrossRef Google scholar
[8]
Yang HQ, Xu ZH, Fan MH, et al.. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci., 2008, 20(1): 14,
CrossRef Google scholar
[9]
Menyah K, Wolde-Rufael Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy, 2010, 38(6): 2911,
CrossRef Google scholar
[10]
Wang P, Mao XB, Chen SE. CO2 sequestration characteristics in the cementitious material based on gangue backfilling mining method. Int. J. Min. Sci. Technol., 2019, 29(5): 721,
CrossRef Google scholar
[11]
Hu YC, Guo YF, Sun J, Li HL, Liu WQ. Progress in MgO sorbents for cyclic CO2 capture: A comprehensive review. J. Mater. Chem. A, 2019, 7(35): 20103,
CrossRef Google scholar
[12]
S. Paltsev, J. Morris, H. Kheshgi, and H. Herzog, Hard-to-Abate sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation, Appl. Energy, 300(2021), art. No. 117322.
[13]
Z.E. Zhang, T. Wang, M.J. Blunt, et al., Advances in carbon capture, utilization and storage, Appl. Energy, 278(2020), art. No. 115627.
[14]
L.P. Fu, Z.K. Ren, W.Z. Si, et al., Research progress on CO2 capture and utilization technology, J. CO 2 Util., 66(2022), art. No. 102260.
[15]
Yan JY. Carbon capture and storage (CCS). Appl. Energy, 2015, 148: A1,
CrossRef Google scholar
[16]
Hepburn C, Adlen E, Beddington J, et al.. The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575(7781): 87,
CrossRef Google scholar
[17]
Liu ZQ, Zheng J, Wang Y, Liu X. Selective reduction of carbon dioxide into amorphous carbon over activated natural magnetite. Int. J. Miner. Metall. Mater., 2021, 28(2): 231,
CrossRef Google scholar
[18]
Lu X, Tian WJ, Li H, Li XJ, Quan K, Bai H. Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis. Int. J. Miner. Metall. Mater., 2023, 30(2): 388,
CrossRef Google scholar
[19]
Li P, Pan SY, Pei SL, Lin YJ, Chiang PC. Challenges and perspectives on carbon fixation and utilization technologies: An overview. Aerosol Air Qual. Res., 2016, 16(6): 1327,
CrossRef Google scholar
[20]
Bobicki ER, Liu QX, Xu ZH, Zeng HB. Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci., 2012, 38(2): 302,
CrossRef Google scholar
[21]
Pera-Titus M. Porous inorganic membranes for CO2 capture: Present and prospects. Chem. Rev., 2014, 114(2): 1413,
CrossRef Google scholar
[22]
Wang K, Yan XL, Komarneni S. CO2 adsorption by several types of pillared montmorillonite clays. Appl. Petrochem. Res., 2018, 8(3): 173,
CrossRef Google scholar
[23]
Merkel TC, Lin HQ, Wei XT, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci., 2010, 359(1–2): 126,
CrossRef Google scholar
[24]
J. Godin, W.Z. Liu, S. Ren, and C.B. Xu, Advances in recovery and utilization of carbon dioxide: A brief review, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105644.
[25]
H.Y. Tao, X. Qian, Y. Zhou, and H.F. Cheng, Research progress of clay minerals in carbon dioxide capture, Renewable Sustainable Energy Rev., 164(2022), art. No. 112536.
[26]
MacDowell N, Florin N, Buchard A, et al.. An overview of CO2 capture technologies. Energy Environ. Sci., 2010, 3(11): 1645,
CrossRef Google scholar
[27]
Czarnota R, Knapik E, Wojnarowski P, Janiga D, Stopa J. Carbon dioxide separation techonlogies. Arch. Min. Sci., 2019, 64(3): 487
[28]
Z.H. Ban, K.K. Lau, and M. Azmi, Physical absorption of CO2 capture: A review, [in] L. Ismail, K.A. Azizli, T. Murugesan, S. Ganguly, and Y. Uemura, eds., Proceedings of the International Conference on Process Engineering and Advanced Materials 2012 (ICPEAM 2012), Kuala Lumpur, 2012, p. 134.
[29]
B.C. Liu, Y.S. Qiao, Q. Li, W.G. Jia, and T. Wang, CO2 separation from CO2-EOR associated gas using hollower fiber membranes: A process design and simulation study, J. Nat. Gas Sci. Eng., 100(2022), art. No. 104451.
[30]
Han Y, Hwang G, Kim H, Haznedaroglu BZ, Lee B. Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous-macroporous structure for CO2 capture. Chem. Eng. J., 2015, 259: 653,
CrossRef Google scholar
[31]
Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renewable Sustainable Energy Rev., 2014, 39: 426,
CrossRef Google scholar
[32]
Bae JY. CO2 capture by amine-functionalized mesoporous hollow silica. J. Nanosci. Nanotechnol., 2017, 17(10): 7418,
CrossRef Google scholar
[33]
W. Zhang, Y.S. Bao, and A. Bao, Preparation of nitrogen-doped hierarchical porous carbon materials by a template-free method and application to CO2 capture, J. Environ. Chem. Eng., 8(2020), No. 3, art. No. 103732.
[34]
Du T, Liu LY, Xiao P, Che S, Wang HM. Preparation of zeolite NaA for CO2 capture from nickel laterite residue. Int. J. Miner. Metall. Mater., 2014, 21(8): 820,
CrossRef Google scholar
[35]
Gao ZC, Li LQ, Li HL, Chen RF, Wang S, Wang YG. A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation. J. Cent. South Univ., 2017, 24(8): 1727,
CrossRef Google scholar
[36]
Wang SP, Yan SL, Ma XB, Gong JL. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ. Sci., 2011, 4(10): 3805,
CrossRef Google scholar
[37]
Ochedi FO, Liu YX, Adewuyi YG. State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials. Process. Saf. Environ. Prot., 2020, 139: 1,
CrossRef Google scholar
[38]
Fang F, Li ZS, Cai NS. CO2 capture from flue gases using a fluidized bed reactor with limestone. Korean J. Chem. Eng., 2009, 26(5): 1414,
CrossRef Google scholar
[39]
Ida JI, Xiong RT, Lin YS. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep. Purif. Technol., 2004, 36(1): 41,
CrossRef Google scholar
[40]
N. Chouikhi, J.A. Cecilia, E. Vilarrasa-García, et al., CO2 adsorption of materials synthesized from clay minerals: A review, Minerals, 9(2019), No. 9, art. No. 514.
[41]
Orr FM. Carbon capture, utilization, and storage: An update. SPE J., 2018, 23(6): 2444,
CrossRef Google scholar
[42]
W.Z. Liu, L.M. Teng, S. Rohani, et al., CO2 mineral carbonation using industrial solid wastes: A review of recent developments, Chem. Eng. J., 416(2021), art. No. 129093.
[43]
Park S. CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism. Energy, 2018, 153: 413,
CrossRef Google scholar
[44]
He MY, Liu WZ, Liu QC, Qin ZF. Research progress in CO2 mineral sequestration technology. Chem. Ind. Eng. Prog., 2022, 41(4): 1825
[45]
B. Wang, Z.H. Pan, H.G. Cheng, Z.E. Zhang, and F.Q. Cheng, A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum, J. Cleaner Prod., 302(2021), art. No. 126930.
[46]
Xie HP, Yue HR, Zhu JH, et al.. Scientific and engineering progress in CO2 mineralization using industrial waste and natural minerals. Engineering, 2015, 1(1): 150,
CrossRef Google scholar
[47]
Chen YH, Lu DL. CO2 capture by kaolinite and its adsorption mechanism. Appl. Clay Sci., 2015, 104: 221,
CrossRef Google scholar
[48]
Q.H. Liu, J.L. Jiang, F. Zhang, et al., CO2 fixation mechanism of kaolin treated with organic amines at varied temperatures and pressure, Appl. Clay Sci., 228(2022), art. No. 106638.
[49]
Chen YH, Lu DL. Amine modification on kaolinites to enhance CO2 adsorption. J. Colloid Interface Sci., 2014, 436: 47,
CrossRef Google scholar
[50]
X.D. Du, D.D. Pang, Y. Zhao, Z.K. Hou, H.L. Wang, and Y.G. Cheng, Investigation into the adsorption of CO2, N2 and CH4 on kaolinite clay, Arabian J. Chem., 15(2022), No. 3, art. No. 103665.
[51]
Ramadass K, Singh G, Lakhi KS, et al.. Halloysite nanotubes: Novel and eco-friendly adsorbents for high-pressure CO2 capture. Microporous Mesoporous Mater., 2019, 277: 229,
CrossRef Google scholar
[52]
J. Kim, I. Rubino, J.Y. Lee, and H.J. Choi, Application of halloysite nanotubes for carbon dioxide capture, Mater. Res. Express, 3(2016), No. 4, art. No. 045019.
[53]
Chen C, Park DW, Ahn WS. Surface modification of a low cost bentonite for post-combustion CO2 capture. Appl. Surf. Sci., 2013, 283: 699,
CrossRef Google scholar
[54]
N. Horri, E.S. Sanz- Pérez, A. Arencibia, R. Sanz, N. Frini-Srasra, and E. Srasra, Amine grafting of acid-activated bentonite for carbon dioxide capture, Appl. Clay Sci., 180(2019), art. No. 105195.
[55]
Vilarrasa-García E, Cecilia JA, Aguado ER, et al.. Aminomodified pillared adsorbent from water-treatment solid wastes applied to CO2/N2 separation. Adsorption, 2017, 23(2): 405,
CrossRef Google scholar
[56]
Gómez-Pozuelo G, Sanz-Pérez ES, Arencibia A, Pizarro P, Sanz R, Serrano DP. CO2 adsorption on amine-function-alized clays. Microporous Mesoporous Mater., 2019, 282: 38,
CrossRef Google scholar
[57]
Cecilia JA, Vilarrasa-García E, Cavalcante CL, Azevedo DCS, Franco F, Rodríguez-Castellón E. Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. J. Environ. Chem. Eng., 2018, 6(4): 4573,
CrossRef Google scholar
[58]
H. Zhu, S.M. Li, J.F. Zhang, L.K. Zhao, and Y. Huang, A highly effective and low-cost sepiolite-based solid amine adsorbent for CO2 capture in post-combustion, Sep. Purif. Technol., 306(2023), art. No. 122627.
[59]
K. Quiroz-Estrada, M. Hernández-Espinosa, F. Rojas, R. Portillo, E. Rubio, and L. López, N2 and CO2 adsorption by soils with high kaolinite content from San Juan Amecac, Puebla, México, Minerals, 6(2016), No. 3, art. No. 73.
[60]
Bates TF, Hildebrand F, Swineford A. Morphology and structure of endellite and halloysite. Am. Mineral., 1950, 35: 463
[61]
Lvov YM, Shchukin DG, Möhwald H, Price RR. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano, 2008, 2(5): 814,
CrossRef Google scholar
[62]
A. Hamza, I.A. Hussein, M.J. Al-Marri, M. Mahmoud, and R. Shawabkeh, Impact of clays on CO2 adsorption and enhanced gas recovery in sandstone reservoirs, Int. J. Greenh. Gas Contr., 106(2021), art. No. 103286.
[63]
Wang WB, Mu B, Zhang JP, Wang AQ. Attapulgite: From clay minerals to functional materials. Sci. Sin. Chim, 2018, 48(12): 1432,
CrossRef Google scholar
[64]
Ouyang J, Gu W, Zheng CH, et al.. Polyethyleneimine (PEI) loaded MgO–SiO2 nanofibers from sepiolite minerals for reusable CO2 capture/release applications. Appl. Clay Sci., 2018, 152: 267,
CrossRef Google scholar
[65]
Wang WL, Xiao J, Wei XL, Ding J, Wang XX, Song CS. Development of a new clay supported polyethylenimine composite for CO2 capture. Appl. Energy, 2014, 113: 334,
CrossRef Google scholar
[66]
Niu MY, Yang HM, Zhang XC, Wang YT, Tang AD. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl. Mater. Interfaces, 2016, 8(27): 17312,
CrossRef Google scholar
[67]
Ouyang, Zheng CH, Gu W, Zhang Y, Yang HM, Suib SL. Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from α-sepiolite. Chem. Eng. J., 2018, 337: 342,
CrossRef Google scholar
[68]
Barakan S, Aghazadeh V. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: A review. Environ. Sci. Pollut. Res. Int., 2021, 28(3): 2572,
CrossRef Google scholar
[69]
Huang ZL, Karami D, Mahinpey N. Study on the efficiency of multiple amino groups in ionic liquids on their sorbents performance for low-temperature CO2 capture. Chem. Eng. Res. Des., 2021, 167: 198,
CrossRef Google scholar
[70]
Rochelle GT. Amine scrubbing for CO2 capture. Science, 2009, 325(5948): 1652,
CrossRef Google scholar
[71]
Bhatti U, Sivanesan D, Nam S, Park SY, Baek IH. Efficient Ag2O–Ag2CO3 catalytic cycle and its role in minimizing the energy requirement of amine solvent regeneration for CO2 capture. ACS Sustainable Chem. Eng., 2019, 7(12): 10234,
CrossRef Google scholar
[72]
Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Ind. Eng. Chem. Res., 1999, 38(10): 3917,
CrossRef Google scholar
[73]
Xie PF, Li LQ, He ZC, Su CQ. Gas-liquid mass transfer of carbon dioxide capture by magnesium hydroxide slurry in a bubble column reactor. J. Cent. South Univ., 2019, 26(6): 1592,
CrossRef Google scholar
[74]
Taheri FS, Ghaemi A, Maleki A, Shahhosseini S. High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite. Energy Fuels, 2019, 33(6): 5384,
CrossRef Google scholar
[75]
Ouyang J, Gu W, Zhang Y, et al.. CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization. Chem. Eng. J., 2018, 341: 432,
CrossRef Google scholar
[76]
Chen C, Kim J, Ahn W-S. CO2 capture by amine-functionalized nanoporous materials: A review. Korean J. Chem. Eng., 2014, 31(11): 1919,
CrossRef Google scholar
[77]
Cai HH, Bao F, Gao J, Chen T, Wang S, Ma R. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified halloysite nanotubes. Environ. Technol., 2015, 36(9–12): 1273,
CrossRef Google scholar
[78]
Irani M, Fan MH, Ismail H, Tuwati A, Dutcher B, Russell AG. Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption. Nano Energy, 2015, 11: 235,
CrossRef Google scholar
[79]
Wang WL, Wang XX, Song CS, Wei XL, Ding J, Xiao J. Sulfuric acid modified bentonite as the support of tetraethylenepentamine for CO2 capture. Energy Fuels, 2013, 27(3): 1538,
CrossRef Google scholar
[80]
Vilarrasa-García E, Cecilia JA, Azevedo DCS, Cavalcante CL, Rodríguez-Castellón E. Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Microporous Mesoporous Mater., 2017, 249: 25,
CrossRef Google scholar
[81]
Atilhan M, Atilhan S, Ullah R, et al.. High-pressure methane, carbon dioxide, and nitrogen adsorption on amine-impregnated porous montmorillonite nanoclays. J. Chem. Eng. Data, 2016, 61(8): 2749,
CrossRef Google scholar
[82]
Singh G, Lakhi KS, Kim IY, et al.. Highly efficient method for the synthesis of activated mesoporous biocarbons with extremely high surface area for high-pressure CO2 adsorption. ACS Appl. Mater. Interfaces, 2017, 9(35): 29782,
CrossRef Google scholar
[83]
He LL, Fan MH, Dutcher B, et al.. Dynamic separation of ultradilute CO2 with a nanoporous amine-based sorbent. Chem. Eng. J., 2012, 189–190: 13,
CrossRef Google scholar
[84]
Chen S, Jia B, Peng Y, et al.. CO2 adsorption behavior of 3-aminopropyltrimethoxysilane-functionalized attapulgite with the grafting modification method. Ind. Eng. Chem. Res., 2021, 60(47): 17150,
CrossRef Google scholar
[85]
S. Park, J. Ryu, H.Y. Cho, and D. Sohn, Halloysite nanotubes loaded with HKUST-1 for CO2 adsorption, Colloids Surf. A, 651(2022), art. No. 129750.
[86]
Stevens L, Williams K, Han WY, et al.. Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route. Chem. Eng. J., 2013, 215–216: 699,
CrossRef Google scholar
[87]
Chen S, Chao YN, Wu JM, Ye H, Luo X, Liang ZW. A new solid adsorbent for CO2 capture based on an amine polycarboxylate ionic liquid with multiple absorption sites. Ind. Eng. Chem. Res., 2022, 61(32): 11953,
CrossRef Google scholar
[88]
Hu SZ, Zhang HL. Analysis of CO2 adsorption performance of ionic liquid modified halloysite. Ion Exch. Adsorpt., 2021, 37(6): 543
[89]
Galeano LA, Vicente M, Gil A. Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M = Fe, Cu, Mn). Catal. Rev. Sci. Eng., 2014, 56(3): 239,
CrossRef Google scholar
[90]
Kloprogge JT. Synthesis of smectites and porous pillared clay catalysts: A review. J. Porous Mater., 1998, 5(1): 5,
CrossRef Google scholar
[91]
Wu K, Ye Q, Wu RP, Chen S, Dai HX. Carbon dioxide adsorption behaviors of aluminum-pillared montmorillonite-supported alkaline earth metals. J. Environ. Sci., 2020, 98: 109,
CrossRef Google scholar
[92]
K. Wu, Q. Ye, R.P. Wu, and H.X. Dai, Alkali metal-promoted aluminum-pillared montmorillonites: High-performance CO2 adsorbents, J. Solid State Chem., 291(2020), art. No. 121585.
[93]
Sanz R, Calleja G, Arencibia A, Sanz-Pérez ES. Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A, 2013, 1(6): 1956,
CrossRef Google scholar
[94]
W. Seifritz, CO2 disposal by means of silicates, Nature, 345(1990), No. 6275, art. No. 486.
[95]
Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH. Carbon dioxide disposal in carbonate minerals. Energy, 1995, 20(11): 1153,
CrossRef Google scholar
[96]
Ding WJ, Ouyang J, Yang HM. Synthesis and characterization of nesquehonite (MgCO3·3H2O) powders from natural talc. Powder Technol., 2016, 292: 169,
CrossRef Google scholar
[97]
Lackner KS, Butt DP, Wendt CH. Progress on binding CO2 in mineral substrates. Energy Convers. Manage., 1997, 38: S259,
CrossRef Google scholar
[98]
O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK. Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products. Min. Metall. Explor., 2002, 19(2): 95
[99]
Huijgen WJJ, Witkamp GJ, Comans RNJ. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem. Eng. Sci., 2006, 61(13): 4242,
CrossRef Google scholar
[100]
Tai CY, Chen WR, Shih SM. Factors affecting wollastonite carbonation under CO2 supercritical conditions. AlChE. J., 2006, 52(1): 292,
CrossRef Google scholar
[101]
Zevenhoven R, Wiklund A, Fagerlund J, et al.. Carbonation of calcium-containing mineral and industrial by-products. Front. Chem. Eng. China, 2010, 4(2): 110,
CrossRef Google scholar
[102]
A.A. Fara, M.R. Rayson, G.F. Brent, T.K. Oliver, M. Stockenhuber, and E.M. Kennedy, Formation of magnesite and hydromagnesite from direct aqueous carbonation of thermally activated lizardite, Environ. Prog. Sustainable Energy, 38(2019), No. 3, art. No. e13244.
[103]
Farhang F, Oliver TK, Rayson M, Brent G, Stockenhuber M, Kennedy E. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. Chem. Eng. J., 2016, 303: 439,
CrossRef Google scholar
[104]
Fabian M, Shopska M, Paneva D, et al.. The influence of attrition milling on carbon dioxide sequestration on magnesium–iron silicate. Miner. Eng., 2010, 23(8): 616,
CrossRef Google scholar
[105]
Li JJ, Hitch M. Mechanical activation of magnesium silicates for mineral carbonation, a review. Miner. Eng., 2018, 128: 69,
CrossRef Google scholar
[106]
Huijgen WJJ, Ruijg GJ, Comans RNJ, Witkamp GJ. Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind. Eng. Chem. Res., 2006, 45(26): 9184,
CrossRef Google scholar
[107]
Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H. Ex situ aqueous mineral carbonation. Environ. Sci. Technol., 2007, 41(7): 2587,
CrossRef Google scholar
[108]
Eikeland E, Blichfeld AB, Tyrsted C, Jensen A, Iversen BB. Optimized carbonation of magnesium silicate mineral for CO2 storage. ACS Appl. Mater. Interfaces, 2015, 7(9): 5258,
CrossRef Google scholar
[109]
Li JJ, Jacobs AD, Hitch M. Direct aqueous carbonation on olivine at a CO2 partial pressure of 6.5 MPa. Energy, 2019, 173: 902,
CrossRef Google scholar
[110]
Teir S, Kuusik R, Fogelholm CJ, Zevenhoven R. Production of magnesium carbonates from serpentinite for long-term storage of CO2. Int. J. Miner. Process., 2007, 85(1–3): 1,
CrossRef Google scholar
[111]
Ferrufino GLAA, Okamoto S, Santos JCD, et al.. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using iron-rich lizardite 1T. J. CO2 Util., 2018, 24: 164,
CrossRef Google scholar
[112]
Wang XL, Maroto-Valer MM. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation. Fuel, 2011, 90(3): 1229,
CrossRef Google scholar
[113]
Fagerlund J, Nduagu E, Romão I, Zevenhoven R. CO2 fixation using magnesium silicate minerals part 1: Process description and performance. Energy, 2012, 41(1): 184,
CrossRef Google scholar
[114]
Bao WJ, Li HQ, Zhang Y. Experimental investigation of enhanced carbonation by solvent extraction for indirect CO2 mineral sequestration. Greenh. Gases Sci. Technol., 2014, 4(6): 785,
CrossRef Google scholar
[115]
Goff F, Lackner KS. Carbon dioxide sequestering using ultramaf IC rocks. Environ. Geosci., 1998, 5(3): 89,
CrossRef Google scholar
[116]
Ziock HJ, Butt DP, Lackner KS, Wendt CH. Abraham MA, Hesketh RP. The need and options available for permanent CO2 disposal. Reaction Engineering for Pollution Prevention, 2000 Amsterdam Elsevier 41,
CrossRef Google scholar
[117]
Teir S, Revitzer H, Eloneva S, Fogelholm CJ, Zevenhoven R. Dissolution of natural serpentinite in mineral and organic acids. Int. J. Miner. Process., 2007, 83(1–2): 36,
CrossRef Google scholar
[118]
W.K. O’Connor, D.C. Dahlin, D.N. Nilsen, G.E. Rush, R.P. Walters, and P.C. Turner, CO2 storage in solid form: A study of direct mineral carbonation, [in] 5th International Conference on Greenhouse Gas Technologies, Cairns, 2000, p. 14.
[119]
Huijgen WJJ. . Carbon Dioxide Sequestration by Mineral Carbonation, 2007 Wageningen Wageningen University and Research 47
[120]
Metz B, Davidson O, de Coninck H, Loos M, Meyer L. . IPCC Special Report: Carbon Dioxide Capture and Storage, 2005 Cambridge Cambridge University Press 323
[121]
J.G. Blencoe, D.A. Palmer, L.M. Anovitz, and J.S. Beard, Carbonation of Metal Silicates for Long-Term CO2 Sequestration, United States Patent, Appl. 13/361215, 2014.
[122]
Nduagu E, Björklöf T, Fagerlund J, et al.. Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization–Part 2: Mg extraction modeling and application to different Mg silicate rocks. Miner. Eng., 2012, 30: 87,
CrossRef Google scholar
[123]
Romão IS, Gando-Ferreira LM, Zevenhoven R. Combined extraction of metals and production of Mg(OH)2 for CO2 sequestration from nickel mine ore and overburden. Miner. Eng., 2013, 53: 167,
CrossRef Google scholar
[124]
Raza W, Raza N, Agbe H, Kumar RV, Kim KH, Yang JH. Multistep sequestration and storage of CO2 to form valuable products using forsterite. Energy, 2018, 155: 865,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/