A review of linear friction welding of Ni-based superalloys
Xiawei Yang, Tingxi Meng, Qiang Chu, Yu Su, Zhenguo Guo, Rui Xu, Wenlong Fan, Tiejun Ma, Wenya Li
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1382-1391.
A review of linear friction welding of Ni-based superalloys
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion, radiation, fatigue resistance, and high-temperature strength. Linear friction welding (LFW) is a new joining technology with near-net-forming characteristics that can be used for the manufacture and repair of a wide range of aerospace components. This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation, microstructures, mechanical properties, flash morphology, residual stresses, creep, and fatigue of Ni-based superalloy weldments produced with LFW to enable future optimum utilization of the LFW process.
Ni-based superalloys / linear friction welding / microstructures / mechanical properties / flash morphology
[1] |
|
[2] |
|
[3] |
|
[4] |
E.Y. Liu, Q.S. Ma, X.T. Li, et al., Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., (2024). DOI: https://doi.org/10.1007/s12613-024-2887-7
|
[5] |
J. Kang, R.G. Li, D.Y. Wu, et al., On the low cycle fatigue behaviors of Ni-based superalloy at room temperature: Deformation and fracture mechanisms, Mater. Charact., 211(2024), art. No. 113920.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
Z.G. Guo, T.J. Ma, X.W. Yang, et al., Linear friction welding of Ti60 near-α titanium alloy: Investigating phase transformations and dynamic recrystallization mechanisms, Mater. Charact., 194(2022), art. No. 112424.
|
[16] |
Z.G. Guo, T.J. Ma, W.Y. Li, et al., Intergrowth bonding mechanism and mechanical property of linear friction welded dissimilar near-alpha to near-beta titanium alloy joint, Adv. Eng. Mater., 23(2021), No. 5, art. No. 2001479.
|
[17] |
X.W. Yang, T.X Meng, Y. Su, et al., Evolution of microstructure and mechanical properties of cold spray additive manufactured aluminum deposit on copper substrate, Mater. Sci. Eng. A, 891(2024), art. No. 146024.
|
[18] |
Z.G. Guo, T.J. Ma, X.W. Yang, et al., In-situ investigation on dislocation slip concentrated fracture mechanism of linear friction welded dissimilar Ti17(α + β)/Ti17(β) titanium alloy joint, Mater. Sci. Eng. A, 872(2023), art. No. 144991.
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
Y. Su, W.Y. Li, X.Y. Wang, et al., On the process variables and weld quality of a linear friction welded dissimilar joint between S31042 and S34700 austenitic steels, Adv. Eng. Mater., 21(2019), No. 7, art. No. 1801354.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
P.H. Geng, G.L. Qin, H. Ma, et al., Numerical modelling on the plastic flow and interfacial self-cleaning in linear friction welding of superalloys, J. Mater. Process. Technol., 296(2021), art. No. 117198.
|
[33] |
|
[34] |
|
[35] |
R.R. Ye, H.Y. Li, R.G. Ding, et al., Microstructure and microhardness of dissimilar weldment of Ni-based superalloys IN718-IN713LC, Mater. Sci. Eng. A, 774(2020), art. No. 138894.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
J.T. Liu, J.L. Li, X.G. Li, et al., Fatigue fracture behavior of a Ti17 joint under various heat treatment specifications prepared by linear friction welding, Mater. Charact., 205(2023), art. No. 113318.
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
G.L. Qin, P.H. Geng, J. Zhou, and Z.D. Zou, Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy, Mater. Des., 172(2019), art. No. 107766.
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
P. Effertz, F. Fuchs, and N. Enzinger, 3D modelling of flash formation in linear friction welded 30CrNiMo8 steel chain, Metals, 7(2017), No. 10, art. No. 449.
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
A. Vairis and N. Christakis, The development of a continuum framework for friction welding processes with the aid of micro-mechanical parameterisations, Int. J. Model. Identif. Contr., 2(2007), No. 4, art. No. 347.
|
[91] |
P.H. Geng, G.L. Qin, and J. Zhou, A computational modeling of fully friction contact-interaction in linear friction welding of Ni-based superalloys, Mater. Des., 185(2020), art. No. 108244.
|
[92] |
|
[93] |
P.H. Geng, H. Ma, M.X. Wang, et al., Dissimilar linear friction welding of Ni-based superalloys, Int. J. Mach. Tools Manuf., 191(2023), art. No. 104062.
|
[94] |
M. Javidikia, M. Sadeghifar, H. Champliaud, and M. Jahazi, Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations, J. Adv. Join. Process., 8(2023), art. No. 100150.
|
[95] |
F. Masoumi, D. Shahriari, H. Monajati, et al., Linear friction welding of AD730™ Ni-base superalloy: Process-microstructure-property interactions, Mater. Des., 183(2019), art. No. 108117.
|
[96] |
S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo, and M. Jahazi, Grain size and misorientation evolution in linear friction welding of additively manufactured IN718 to forged superalloy AD730™, Mater. Charact., 171(2021), art. No. 110766.
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
X.W. Yang, C. Peng, T.J. Ma, et al., Finite element analysis of fatigue crack growth of linear friction welded superalloy joints, Acta Aeronaut. Astronaut. Sin., 43(2022), No. 2, art. No. 625004.
|
[104] |
|
[105] |
H. Pasiowiec, B. Dubiel, R. Dziurka, et al., Effect of creep deformation on the microstructure evolution of Inconel 625 nickel-based superalloy additively manufactured by laser powder bed fusion, Mater. Sci. Eng. A, 887(2023), art. No. 145742.
|
[106] |
S.M. Wen, Z.C. Liu, D. Mi, S.H. Yang, B.C. Li, and C. Jiang, Novel fatigue life prediction method of a Ni-based superalloy welded joint considering defect and temperature, Int. J. Fatigue, 177(2023), art. No. 107924.
|
/
〈 |
|
〉 |