A review of linear friction welding of Ni-based superalloys

Xiawei Yang, Tingxi Meng, Qiang Chu, Yu Su, Zhenguo Guo, Rui Xu, Wenlong Fan, Tiejun Ma, Wenya Li

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1382-1391. DOI: 10.1007/s12613-023-2782-7
Invited Review

A review of linear friction welding of Ni-based superalloys

Author information +
History +

Abstract

Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion, radiation, fatigue resistance, and high-temperature strength. Linear friction welding (LFW) is a new joining technology with near-net-forming characteristics that can be used for the manufacture and repair of a wide range of aerospace components. This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation, microstructures, mechanical properties, flash morphology, residual stresses, creep, and fatigue of Ni-based superalloy weldments produced with LFW to enable future optimum utilization of the LFW process.

Keywords

Ni-based superalloys / linear friction welding / microstructures / mechanical properties / flash morphology

Cite this article

Download citation ▾
Xiawei Yang, Tingxi Meng, Qiang Chu, Yu Su, Zhenguo Guo, Rui Xu, Wenlong Fan, Tiejun Ma, Wenya Li. A review of linear friction welding of Ni-based superalloys. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1382‒1391 https://doi.org/10.1007/s12613-023-2782-7

References

[1]
Yang SL, Yang SF, Liu W, et al.. Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy. Int. J. Miner. Metall. Mater., 2023, 30(5): 939,
CrossRef Google scholar
[2]
Tayeband HH, Rafiaei SM. Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding. Int. J. Miner. Metall. Mater., 2022, 29(2): 327,
CrossRef Google scholar
[3]
Zhang MH, Zhang BC, Wen YJ, et al.. Research progress on selective laser melting processing for nickel-based superalloy. Int. J. Miner. Metall. Mater., 2022, 29(3): 369,
CrossRef Google scholar
[4]
E.Y. Liu, Q.S. Ma, X.T. Li, et al., Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., (2024). DOI: https://doi.org/10.1007/s12613-024-2887-7
[5]
J. Kang, R.G. Li, D.Y. Wu, et al., On the low cycle fatigue behaviors of Ni-based superalloy at room temperature: Deformation and fracture mechanisms, Mater. Charact., 211(2024), art. No. 113920.
[6]
Su Y, Yang XW, Meng TX, et al.. Strengthening mechanism and forming control of linear friction welded GH4169 alloy joints. Chin. J. Aeronaut., 2024, 37(4): 609,
CrossRef Google scholar
[7]
Zhang HY, Zhang LF. Development overview of aeroengine integral blisk and its manufacturing technology at home and abroad. Aeronaut. Manuf. Technol., 2013, 56(23/24): 38
[8]
Smith M, Bichler L, Gholipour J, Wanjara P. Mechanical properties and microstructural evolution of in-service Inconel 718 superalloy repaired by linear friction welding. Int. J. Adv. Manuf. Technol., 2017, 90(5–8): 1931,
CrossRef Google scholar
[9]
Wu H, Sun M, Yang Y. Research progress in linear friction welding technology. Welding Technol., 2014, 43(7): 1
[10]
Yi ZL, Shan JG, Zhao Y, et al.. Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys. Int. J. Miner. Metall. Mater., 2024, 31(5): 1072,
CrossRef Google scholar
[11]
Li XS, Sukhomlinov D, Que ZQ. Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion. Int. J. Miner. Metall. Mater., 2024, 31(1): 118,
CrossRef Google scholar
[12]
Chen MM, Shi RH, Liu ZZ, et al.. Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718. Int. J. Miner. Metall. Mater., 2023, 30(11): 2224,
CrossRef Google scholar
[13]
Su Y, Yang XW, Wu D, et al.. Controlling deformation and residual stresses in a TIG joint for Invar steel molds. J. Mater. Res. Technol., 2023, 27: 490,
CrossRef Google scholar
[14]
Su Y, Yang XW, Wu D, et al.. Optimizing welding sequence of TIG cross-joint of Invar steel using residual stresses and deformations. J. Manuf. Process., 2023, 105: 232,
CrossRef Google scholar
[15]
Z.G. Guo, T.J. Ma, X.W. Yang, et al., Linear friction welding of Ti60 near-α titanium alloy: Investigating phase transformations and dynamic recrystallization mechanisms, Mater. Charact., 194(2022), art. No. 112424.
[16]
Z.G. Guo, T.J. Ma, W.Y. Li, et al., Intergrowth bonding mechanism and mechanical property of linear friction welded dissimilar near-alpha to near-beta titanium alloy joint, Adv. Eng. Mater., 23(2021), No. 5, art. No. 2001479.
[17]
X.W. Yang, T.X Meng, Y. Su, et al., Evolution of microstructure and mechanical properties of cold spray additive manufactured aluminum deposit on copper substrate, Mater. Sci. Eng. A, 891(2024), art. No. 146024.
[18]
Z.G. Guo, T.J. Ma, X.W. Yang, et al., In-situ investigation on dislocation slip concentrated fracture mechanism of linear friction welded dissimilar Ti17(α + β)/Ti17(β) titanium alloy joint, Mater. Sci. Eng. A, 872(2023), art. No. 144991.
[19]
Guo ZG, Ma TJ, Chen X, et al.. Interfacial bonding mechanism of linear friction welded dissimilar Ti2AlNb–Ti60 joint: Grain intergrowth induced by combined effects of dynamic recrystallization, phase transformation and elemental diffusion. J. Mater. Res. Technol., 2023, 24: 5660,
CrossRef Google scholar
[20]
Guo ZG, Ma TJ, Yang XW, Li J, Li WY, Vairis A. Multi-scale analyses of phase transformation mechanisms and hardness in linear friction welded Ti17(α + β)/Ti17(β) dissimilar titanium alloy joint. Chin. J. Aeronaut., 2024, 37(1): 312,
CrossRef Google scholar
[21]
Yang XW, Ma ST, Chu Q, et al.. Investigation of microstructure and mechanical properties of GH4169 superalloy joint produced by linear friction welding. J. Mater. Res. Technol., 2023, 24: 8373,
CrossRef Google scholar
[22]
Orłowska M, Olejnik L, Campanella D, et al.. Application of linear friction welding for joining ultrafine grained aluminium. J. Manuf. Process., 2020, 56: 540,
CrossRef Google scholar
[23]
Yang XW, Li WY, Ma TJ. Finite element analysis of the effect of micro-pore defect on linear friction welding of medium carbon steel. China Weld., 2014, 23(1): 1
[24]
Li WY, Ma TJ, Yang SQ, et al.. Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel. Mater. Lett., 2008, 62(2): 293,
CrossRef Google scholar
[25]
Ma TJ, Li YG, Li WY, Zhang Y, Shi DG, Vairis A. Studies of the interfacial structure of a linear friction welded Fe/Ni joint: First principles calculation and TEM validation. Mater. Charact., 2017, 129: 60,
CrossRef Google scholar
[26]
Li YM, Liu YC, Liu CX, et al.. Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel. J. Mater. Sci. Technol., 2018, 34(4): 653,
CrossRef Google scholar
[27]
Y. Su, W.Y. Li, X.Y. Wang, et al., On the process variables and weld quality of a linear friction welded dissimilar joint between S31042 and S34700 austenitic steels, Adv. Eng. Mater., 21(2019), No. 7, art. No. 1801354.
[28]
Ma T J, Li W Y, Xu Q Z, et al.. Microstructure evolution and mechanical properties of linear friction welded 45 steel joint. Adv. Eng. Mater., 2007, 9(8): 703,
CrossRef Google scholar
[29]
Yang XW, Meng TX, Su Y, et al.. The effect of inclusions and pores on creep crack propagation of linear friction welded joints of GH4169 superalloy. J. Mater. Res. Technol., 2024, 29: 4636,
CrossRef Google scholar
[30]
Karadge M, Preuss M, Withers PJ, Bray S. Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys. Mater. Sci. Eng. A, 2008, 491(1–2): 446,
CrossRef Google scholar
[31]
Ma TJ, Tang LF, Li WY, Zhang Y, Xiao Y, Vairis A. Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies. J. Manuf. Process., 2018, 34: 442,
CrossRef Google scholar
[32]
P.H. Geng, G.L. Qin, H. Ma, et al., Numerical modelling on the plastic flow and interfacial self-cleaning in linear friction welding of superalloys, J. Mater. Process. Technol., 296(2021), art. No. 117198.
[33]
Chamanfar A, Jahazi M, Gholipour J, Wanjara P, Yue S. Suppressed liquation and microcracking in linear friction welded WASPALOY. Mater. Des., 2012, 36: 113,
CrossRef Google scholar
[34]
Ma TJ, Chen X, Li WY, Yang XW, Zhang Y, Yang SQ. Microstructure and mechanical property of linear friction welded nickel-based superalloy joint. Mater. Des., 2016, 89: 85,
CrossRef Google scholar
[35]
R.R. Ye, H.Y. Li, R.G. Ding, et al., Microstructure and microhardness of dissimilar weldment of Ni-based superalloys IN718-IN713LC, Mater. Sci. Eng. A, 774(2020), art. No. 138894.
[36]
Ma TJ, Yan M, Yang XW, Li WY, Chao YJ. Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding. Mater. Des., 2015, 85: 613,
CrossRef Google scholar
[37]
Chen XM, Lin Y C, Chen MS, et al.. Microstructural evolution of a nickel-based superalloy during hot deformation. Mater. Des., 2015, 77: 41,
CrossRef Google scholar
[38]
Li WY, Ma TJ, Zhang Y, et al.. Microstructure characterization and mechanical properties of linear friction welded Ti-6Al-4V alloy. Adv. Eng. Mater., 2008, 10(1–2): 89,
CrossRef Google scholar
[39]
Wanjara P, Jahazi M. Linear friction welding of Ti–6Al–4V: Processing, microstructure, and mechanical-property inter-relationships. Metall. Mater. Trans. A, 2005, 36(8): 2149,
CrossRef Google scholar
[40]
Karadge M, Preuss M, Lovell C, Withers PJ, Bray S. Texture development in Ti–6Al–4V linear friction welds. Mater. Sci. Eng. A, 2007, 459(1–2): 182,
CrossRef Google scholar
[41]
Zhang CC, Zhang TC, Ji YJ, Huang JH. Effects of heat treatment on microstructure and microhardness of linear friction welded dissimilar Ti alloys. Trans. Nonferrous Met. Soc. China, 2013, 23(12): 3540,
CrossRef Google scholar
[42]
Romero J, Attallah MM, Preuss M, Karadge M, Bray SE. Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds. Acta Mater., 2009, 57(18): 5582,
CrossRef Google scholar
[43]
Dalgaard E, Wanjara P, Gholipour J, Cao X, Jonas JJ. Linear friction welding of a near-β titanium alloy. Acta Mater., 2012, 60(2): 770,
CrossRef Google scholar
[44]
Li WY, Ma TJ, Yang SQ. Microstructure evolution and mechanical properties of linear friction welded Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) titanium alloy joints. Adv. Eng. Mater., 2010, 12(1–2): 35,
CrossRef Google scholar
[45]
Chen X, Xie FQ, Ma TJ, Li WY, Wu XQ. Oxidation behavior of three different zones of linear friction welded Ti2AlNb alloy. Adv. Eng. Mater., 2016, 18(11): 1944,
CrossRef Google scholar
[46]
Peng H, Wu YX, Zhang T, Chen SY, Zhang C. Residual stresses in linear friction welding of TC17 titanium alloy considering phase fraction. Trans. Nonferrous Met. Soc. China, 2024, 34(1): 184,
CrossRef Google scholar
[47]
Rotundo F, Marconi A, Morri A, Ceschini A. Dissimilar linear friction welding between a SiC particle reinforced aluminum composite and a monolithic aluminum alloy: Microstructural, tensile and fatigue properties. Mater. Sci. Eng. A, 2013, 559: 852,
CrossRef Google scholar
[48]
Lis A, Mogami H, Matsuda T, et al.. Hardening and softening effects in aluminium alloys during high-frequency linear friction welding. J. Mater. Process. Technol., 2018, 255: 547,
CrossRef Google scholar
[49]
Mogami H, Matsuda T, Sano T, Yoshida R, Hori H, Hirose A. High-frequency linear friction welding of aluminum alloys. Mater. Des., 2018, 139: 457,
CrossRef Google scholar
[50]
Buffa G, Cammalleri M, Campanella D, Fratini L. Shear coefficient determination in linear friction welding of aluminum alloys. Mater. Des., 2015, 82: 238,
CrossRef Google scholar
[51]
Yang XW, Li WY, Li JL, et al.. Finite element modeling of the linear friction welding of GH4169 superalloy. Mater. Des., 2015, 87: 215,
CrossRef Google scholar
[52]
Vairis A, Frost M. Modelling the linear friction welding of titanium blocks. Mater. Sci. Eng. A, 2000, 292(1): 8,
CrossRef Google scholar
[53]
Vairis A, Frost M. High frequency linear friction welding of a titanium alloy. Wear, 1998, 217(1): 117,
CrossRef Google scholar
[54]
Vairis A, Frost M. On the extrusion stage of linear friction welding of Ti 6Al 4V. Mater. Sci. Eng. A, 1999, 271: 477,
CrossRef Google scholar
[55]
McAndrew AR, Colegrove PA, Bühr C, Flipo B CD, Vairis A. A literature review of Ti–6Al–4V linear friction welding. Prog. Mater. Sci., 2018, 92: 225,
CrossRef Google scholar
[56]
Turner R, Gebelin JC, Ward RM, Reed RC. Linear friction welding of Ti–6Al–4V: Modelling and validation. Acta Mater., 2011, 59(10): 3792,
CrossRef Google scholar
[57]
J.T. Liu, J.L. Li, X.G. Li, et al., Fatigue fracture behavior of a Ti17 joint under various heat treatment specifications prepared by linear friction welding, Mater. Charact., 205(2023), art. No. 113318.
[58]
Turner R, Ward RM, March R, Reed RC. The magnitude and origin of residual stress in Ti–6Al–4V linear friction welds: An investigation by validated numerical modeling. Metall. Mater. Trans. B, 2012, 43(1): 186,
CrossRef Google scholar
[59]
Zhang X, Zhang JJ, Yao YK, et al.. Anomalous enhancing effects of electric pulse treatment on strength and ductility of TC17 linear friction welding joints. J. Mater. Sci. Technol., 2024, 203: 155,
CrossRef Google scholar
[60]
Dang ZY, Qin GL, Ma H, Geng PH. Multi-scale characterizations of microstructure and mechanical properties of Ti6242 alloy linear friction welded joint with post-welded heat treatment. Trans. Nonferrous Met. Soc. China, 2023, 33(4): 1114,
CrossRef Google scholar
[61]
Ma TJ, Li WY, Yang SY. Impact toughness and fracture analysis of linear friction welded Ti–6Al–4V alloy joints. Mater. Des., 2009, 30(6): 2128,
CrossRef Google scholar
[62]
Li WY, Wu H, Ma TJ, Yang CL, Chen ZW. Influence of parent metal microstructure and post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti–6Al–4V joint. Adv. Eng. Mater., 2012, 14(5): 312,
CrossRef Google scholar
[63]
Grujicic M, Arakere G, Pandurangan B, Yen CF, Cheeseman BA. Process modeling of Ti–6Al–4V linear friction welding (LFW). J. Mater. Eng. Perform., 2012, 21(10): 2011,
CrossRef Google scholar
[64]
Frankel P, Preuss M, Steuwer A, Withers PJ, Bray S. Comparison of residual stresses in Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo linear friction welds. Mater. Sci. Technol., 2009, 25(5): 640,
CrossRef Google scholar
[65]
Yang XW, Li WY, Li J, Ma TJ, Guo J. FEM analysis of temperature distribution and experimental study of microstructure evolution in friction interface of GH4169 superalloy. Mater. Des., 2015, 84: 133,
CrossRef Google scholar
[66]
Yang XW, Li WY, Feng Y, Yu SQ, Xiao B. Physical simulation of interfacial microstructure evolution for hot compression bonding behavior in linear friction welded joints of GH4169 superalloy. Mater. Des., 2016, 104: 436,
CrossRef Google scholar
[67]
Yang XW, Li WY, Ma J, et al.. Thermo-physical simulation of the compression testing for constitutive modeling of GH4169 superalloy during linear friction welding. J. Alloys Compd., 2016, 656: 395,
CrossRef Google scholar
[68]
Geng PH, Qin GL, Zhou J, Zou ZD. Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process. J. Manuf. Process., 2018, 32: 469,
CrossRef Google scholar
[69]
G.L. Qin, P.H. Geng, J. Zhou, and Z.D. Zou, Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy, Mater. Des., 172(2019), art. No. 107766.
[70]
Li WY, Ma TJ, Li JL. Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters. Mater. Des., 2010, 31(3): 1497,
CrossRef Google scholar
[71]
Li WY, Shi SX, Wang FF, et al.. Heat reflux in flash and its effect on joint temperature history during linear friction welding of steel. Int. J. Therm. Sci., 2013, 67: 192,
CrossRef Google scholar
[72]
Song X, Xie M, Hofmann F, et al.. Residual stresses in Linear Friction Welding of aluminium alloys. Mater. Des., 2013, 50: 360,
CrossRef Google scholar
[73]
McAndrew AR, Colegrove PA, Addison AC, Flipo BCD, Russell MJ, Lee LA. Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds. Mater. Des., 2015, 87: 1087,
CrossRef Google scholar
[74]
McAndrew AR, Colegrove PA, Addison AC, Flipo BCD, Russell MJ. Modelling the influence of the process inputs on the removal of surface contaminants from Ti–6Al–4V linear friction welds. Mater. Des., 2015, 66: 183,
CrossRef Google scholar
[75]
P. Effertz, F. Fuchs, and N. Enzinger, 3D modelling of flash formation in linear friction welded 30CrNiMo8 steel chain, Metals, 7(2017), No. 10, art. No. 449.
[76]
Jedrasiak P, Shercliff HR, McAndrew AR, Colegrove PA. Thermal modelling of linear friction welding. Mater. Des., 2018, 156: 362,
CrossRef Google scholar
[77]
Effertz PS, Fuchs F, Enzinger N. The influence of process parameters in linear friction welded 30CrNiMo8 small cross-section: A modelling approach. Sci. Technol. Weld. Join., 2019, 24(2): 121,
CrossRef Google scholar
[78]
Müller JS, Rettenmayr M, Schneefeld D, Roder O, Fried W. FEM simulation of the linear friction welding of titanium alloys. Comput. Mater. Sci., 2010, 48(4): 749,
CrossRef Google scholar
[79]
Fratini L, Buffa G, Campanella D, La Spisa D. Investigations on the linear friction welding process through numerical simulations and experiments. Mater. Des., 2012, 40: 285,
CrossRef Google scholar
[80]
Grujicic M, Yavari R, Snipes JS, Ramaswami S, Yen CF, Cheeseman BA. Linear friction welding process model for carpenter custom 465 precipitation-hardened martensitic stainless steel. J. Mater. Eng. Perform., 2014, 23(6): 2182,
CrossRef Google scholar
[81]
Li WY, Wang FF, Shi SX, Ma TJ, Li JL, Vairis A. 3D finite element analysis of the effect of process parameters on linear friction welding of mild steel. J. Mater. Eng. Perform., 2014, 23(11): 4010,
CrossRef Google scholar
[82]
Grujicic M, Yavari R, Snipes JS, Ramaswami S. A linear friction welding process model for Carpenter Custom 465 precipitation-hardened martensitic stainless steel: a weld microstructure-evolution analysis. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2015, 229: 1997,
CrossRef Google scholar
[83]
Buffa G, Campanella D, Pellegrino S, Fratini L. Weld quality prediction in linear friction welding of AA6082-T6 through an integrated numerical tool. J. Mater. Process. Technol., 2016, 231: 389,
CrossRef Google scholar
[84]
McAndrew AR, Colegrove PA, Flipo BCD, Bühr C. 3D modelling of Ti–6Al–4V linear friction welds. Sci. Technol. Weld. Join., 2017, 22(6): 496,
CrossRef Google scholar
[85]
Bühr C, Ahmad B, Colegrove PA, McAndrew AR, Guo H, Zhang X. Prediction of residual stress within linear friction welds using a computationally efficient modelling approach. Mater. Des., 2018, 139: 222,
CrossRef Google scholar
[86]
Baffari D, Buffa G, Campanella D, Fratini L, Micari F. Single block 3D numerical model for linear friction welding of titanium alloy. Sci. Technol. Weld. Join., 2019, 24(2): 130,
CrossRef Google scholar
[87]
Geng PH, Qin GL, Zhou J, Zou ZD. Finite element models of friction behaviour in linear friction welding of a Ni-based superalloy. Int. J. Mech. Sci., 2019, 152: 420,
CrossRef Google scholar
[88]
Yonekura K, Shinohara T, Masaki K. Cost-effective estimation of flash extrusion and defects in linear friction welding using Voronoi diagrams. J. Manuf. Process., 2021, 68: 158,
CrossRef Google scholar
[89]
Yang XW, Li WY, Xu YX, Dong XR, Hu KW, Zou YF. Performance of two different constitutive models and microstructural evolution of GH4169 superalloy. Math. Biosci. Eng., 2019, 16(2): 1034,
CrossRef Google scholar
[90]
A. Vairis and N. Christakis, The development of a continuum framework for friction welding processes with the aid of micro-mechanical parameterisations, Int. J. Model. Identif. Contr., 2(2007), No. 4, art. No. 347.
[91]
P.H. Geng, G.L. Qin, and J. Zhou, A computational modeling of fully friction contact-interaction in linear friction welding of Ni-based superalloys, Mater. Des., 185(2020), art. No. 108244.
[92]
Geng PH, Qin GL, Li CG, Wang H, Zhou J. Study on the importance of thermo-elastic effects in FE simulations of linear friction welding. J. Manuf. Process., 2020, 56: 602,
CrossRef Google scholar
[93]
P.H. Geng, H. Ma, M.X. Wang, et al., Dissimilar linear friction welding of Ni-based superalloys, Int. J. Mach. Tools Manuf., 191(2023), art. No. 104062.
[94]
M. Javidikia, M. Sadeghifar, H. Champliaud, and M. Jahazi, Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations, J. Adv. Join. Process., 8(2023), art. No. 100150.
[95]
F. Masoumi, D. Shahriari, H. Monajati, et al., Linear friction welding of AD730™ Ni-base superalloy: Process-microstructure-property interactions, Mater. Des., 183(2019), art. No. 108117.
[96]
S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo, and M. Jahazi, Grain size and misorientation evolution in linear friction welding of additively manufactured IN718 to forged superalloy AD730™, Mater. Charact., 171(2021), art. No. 110766.
[97]
Tabaie S, Aria F R, Flipo BCD, Jahazi M. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730TM: Evolution of strengthening phases. J. Matei. Sci. Technol., 2022, 96: 248,
CrossRef Google scholar
[98]
Geng PH, Qin GL, Li TY, Zhou J, Zou ZD, Yang F. Microstructural characterization and mechanical property of GH4169 superalloy joints obtained by linear friction welding. J. Manuf. Process., 2019, 45: 100,
CrossRef Google scholar
[99]
Geng PH, Qin GL, Ma H, Zhou J, Ma NS. Linear friction welding of dissimilar Ni-based superalloys: Microstructure evolution and thermo-mechanical interaction. J. Mater. Res. Technol., 2021, 11: 633,
CrossRef Google scholar
[100]
Chamanfar A, Jahazi M, Gholipour J, Wanjara P, Yue S. Analysis of integrity and microstructure of linear friction welded Waspaloy. Mater. Charact., 2015, 104: 149,
CrossRef Google scholar
[101]
Smith M, Levesque JB, Bichler L, Sediako D, Gholipour J, Wanjara P. Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches. Mater. Sci. Eng. A, 2017, 691: 168,
CrossRef Google scholar
[102]
Masoumi F, Thébaud L, Shahriari D, et al.. High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy. Mater. Sci. Eng. A, 2018, 710: 214,
CrossRef Google scholar
[103]
X.W. Yang, C. Peng, T.J. Ma, et al., Finite element analysis of fatigue crack growth of linear friction welded superalloy joints, Acta Aeronaut. Astronaut. Sin., 43(2022), No. 2, art. No. 625004.
[104]
Chen JW, Salvati E, Uzun F, et al.. An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy. J. Manuf. Process., 2020, 53: 190,
CrossRef Google scholar
[105]
H. Pasiowiec, B. Dubiel, R. Dziurka, et al., Effect of creep deformation on the microstructure evolution of Inconel 625 nickel-based superalloy additively manufactured by laser powder bed fusion, Mater. Sci. Eng. A, 887(2023), art. No. 145742.
[106]
S.M. Wen, Z.C. Liu, D. Mi, S.H. Yang, B.C. Li, and C. Jiang, Novel fatigue life prediction method of a Ni-based superalloy welded joint considering defect and temperature, Int. J. Fatigue, 177(2023), art. No. 107924.

Accesses

Citations

Detail

Sections
Recommended

/