A review of linear friction welding of Ni-based superalloys

Xiawei Yang , Tingxi Meng , Qiang Chu , Yu Su , Zhenguo Guo , Rui Xu , Wenlong Fan , Tiejun Ma , Wenya Li

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1382 -1391.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1382 -1391. DOI: 10.1007/s12613-023-2782-7
Invited Review

A review of linear friction welding of Ni-based superalloys

Author information +
History +
PDF

Abstract

Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion, radiation, fatigue resistance, and high-temperature strength. Linear friction welding (LFW) is a new joining technology with near-net-forming characteristics that can be used for the manufacture and repair of a wide range of aerospace components. This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation, microstructures, mechanical properties, flash morphology, residual stresses, creep, and fatigue of Ni-based superalloy weldments produced with LFW to enable future optimum utilization of the LFW process.

Keywords

Ni-based superalloys / linear friction welding / microstructures / mechanical properties / flash morphology

Cite this article

Download citation ▾
Xiawei Yang, Tingxi Meng, Qiang Chu, Yu Su, Zhenguo Guo, Rui Xu, Wenlong Fan, Tiejun Ma, Wenya Li. A review of linear friction welding of Ni-based superalloys. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1382-1391 DOI:10.1007/s12613-023-2782-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang SL, Yang SF, Liu W, et al. Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy. Int. J. Miner. Metall. Mater., 2023, 30(5): 939.

[2]

Tayeband HH, Rafiaei SM. Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding. Int. J. Miner. Metall. Mater., 2022, 29(2): 327.

[3]

Zhang MH, Zhang BC, Wen YJ, et al. Research progress on selective laser melting processing for nickel-based superalloy. Int. J. Miner. Metall. Mater., 2022, 29(3): 369.

[4]

E.Y. Liu, Q.S. Ma, X.T. Li, et al., Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., (2024). DOI: https://doi.org/10.1007/s12613-024-2887-7

[5]

J. Kang, R.G. Li, D.Y. Wu, et al., On the low cycle fatigue behaviors of Ni-based superalloy at room temperature: Deformation and fracture mechanisms, Mater. Charact., 211(2024), art. No. 113920.

[6]

Su Y, Yang XW, Meng TX, et al. Strengthening mechanism and forming control of linear friction welded GH4169 alloy joints. Chin. J. Aeronaut., 2024, 37(4): 609.

[7]

Zhang HY, Zhang LF. Development overview of aeroengine integral blisk and its manufacturing technology at home and abroad. Aeronaut. Manuf. Technol., 2013, 56(23/24): 38.

[8]

Smith M, Bichler L, Gholipour J, Wanjara P. Mechanical properties and microstructural evolution of in-service Inconel 718 superalloy repaired by linear friction welding. Int. J. Adv. Manuf. Technol., 2017, 90(5–8): 1931.

[9]

Wu H, Sun M, Yang Y. Research progress in linear friction welding technology. Welding Technol., 2014, 43(7): 1.

[10]

Yi ZL, Shan JG, Zhao Y, et al. Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys. Int. J. Miner. Metall. Mater., 2024, 31(5): 1072.

[11]

Li XS, Sukhomlinov D, Que ZQ. Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion. Int. J. Miner. Metall. Mater., 2024, 31(1): 118.

[12]

Chen MM, Shi RH, Liu ZZ, et al. Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718. Int. J. Miner. Metall. Mater., 2023, 30(11): 2224.

[13]

Su Y, Yang XW, Wu D, et al. Controlling deformation and residual stresses in a TIG joint for Invar steel molds. J. Mater. Res. Technol., 2023, 27, 490.

[14]

Su Y, Yang XW, Wu D, et al. Optimizing welding sequence of TIG cross-joint of Invar steel using residual stresses and deformations. J. Manuf. Process., 2023, 105, 232.

[15]

Z.G. Guo, T.J. Ma, X.W. Yang, et al., Linear friction welding of Ti60 near-α titanium alloy: Investigating phase transformations and dynamic recrystallization mechanisms, Mater. Charact., 194(2022), art. No. 112424.

[16]

Z.G. Guo, T.J. Ma, W.Y. Li, et al., Intergrowth bonding mechanism and mechanical property of linear friction welded dissimilar near-alpha to near-beta titanium alloy joint, Adv. Eng. Mater., 23(2021), No. 5, art. No. 2001479.

[17]

X.W. Yang, T.X Meng, Y. Su, et al., Evolution of microstructure and mechanical properties of cold spray additive manufactured aluminum deposit on copper substrate, Mater. Sci. Eng. A, 891(2024), art. No. 146024.

[18]

Z.G. Guo, T.J. Ma, X.W. Yang, et al., In-situ investigation on dislocation slip concentrated fracture mechanism of linear friction welded dissimilar Ti17(α + β)/Ti17(β) titanium alloy joint, Mater. Sci. Eng. A, 872(2023), art. No. 144991.

[19]

Guo ZG, Ma TJ, Chen X, et al. Interfacial bonding mechanism of linear friction welded dissimilar Ti2AlNb–Ti60 joint: Grain intergrowth induced by combined effects of dynamic recrystallization, phase transformation and elemental diffusion. J. Mater. Res. Technol., 2023, 24, 5660.

[20]

Guo ZG, Ma TJ, Yang XW, Li J, Li WY, Vairis A. Multi-scale analyses of phase transformation mechanisms and hardness in linear friction welded Ti17(α + β)/Ti17(β) dissimilar titanium alloy joint. Chin. J. Aeronaut., 2024, 37(1): 312.

[21]

Yang XW, Ma ST, Chu Q, et al. Investigation of microstructure and mechanical properties of GH4169 superalloy joint produced by linear friction welding. J. Mater. Res. Technol., 2023, 24, 8373.

[22]

Orłowska M, Olejnik L, Campanella D, et al. Application of linear friction welding for joining ultrafine grained aluminium. J. Manuf. Process., 2020, 56, 540.

[23]

Yang XW, Li WY, Ma TJ. Finite element analysis of the effect of micro-pore defect on linear friction welding of medium carbon steel. China Weld., 2014, 23(1): 1.

[24]

Li WY, Ma TJ, Yang SQ, et al. Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel. Mater. Lett., 2008, 62(2): 293.

[25]

Ma TJ, Li YG, Li WY, Zhang Y, Shi DG, Vairis A. Studies of the interfacial structure of a linear friction welded Fe/Ni joint: First principles calculation and TEM validation. Mater. Charact., 2017, 129, 60.

[26]

Li YM, Liu YC, Liu CX, et al. Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel. J. Mater. Sci. Technol., 2018, 34(4): 653.

[27]

Y. Su, W.Y. Li, X.Y. Wang, et al., On the process variables and weld quality of a linear friction welded dissimilar joint between S31042 and S34700 austenitic steels, Adv. Eng. Mater., 21(2019), No. 7, art. No. 1801354.

[28]

Ma T J, Li W Y, Xu Q Z, et al. Microstructure evolution and mechanical properties of linear friction welded 45 steel joint. Adv. Eng. Mater., 2007, 9(8): 703.

[29]

Yang XW, Meng TX, Su Y, et al. The effect of inclusions and pores on creep crack propagation of linear friction welded joints of GH4169 superalloy. J. Mater. Res. Technol., 2024, 29, 4636.

[30]

Karadge M, Preuss M, Withers PJ, Bray S. Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys. Mater. Sci. Eng. A, 2008, 491(1–2): 446.

[31]

Ma TJ, Tang LF, Li WY, Zhang Y, Xiao Y, Vairis A. Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies. J. Manuf. Process., 2018, 34, 442.

[32]

P.H. Geng, G.L. Qin, H. Ma, et al., Numerical modelling on the plastic flow and interfacial self-cleaning in linear friction welding of superalloys, J. Mater. Process. Technol., 296(2021), art. No. 117198.

[33]

Chamanfar A, Jahazi M, Gholipour J, Wanjara P, Yue S. Suppressed liquation and microcracking in linear friction welded WASPALOY. Mater. Des., 2012, 36, 113.

[34]

Ma TJ, Chen X, Li WY, Yang XW, Zhang Y, Yang SQ. Microstructure and mechanical property of linear friction welded nickel-based superalloy joint. Mater. Des., 2016, 89, 85.

[35]

R.R. Ye, H.Y. Li, R.G. Ding, et al., Microstructure and microhardness of dissimilar weldment of Ni-based superalloys IN718-IN713LC, Mater. Sci. Eng. A, 774(2020), art. No. 138894.

[36]

Ma TJ, Yan M, Yang XW, Li WY, Chao YJ. Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding. Mater. Des., 2015, 85, 613.

[37]

Chen XM, Lin Y C, Chen MS, et al. Microstructural evolution of a nickel-based superalloy during hot deformation. Mater. Des., 2015, 77, 41.

[38]

Li WY, Ma TJ, Zhang Y, et al. Microstructure characterization and mechanical properties of linear friction welded Ti-6Al-4V alloy. Adv. Eng. Mater., 2008, 10(1–2): 89.

[39]

Wanjara P, Jahazi M. Linear friction welding of Ti–6Al–4V: Processing, microstructure, and mechanical-property inter-relationships. Metall. Mater. Trans. A, 2005, 36(8): 2149.

[40]

Karadge M, Preuss M, Lovell C, Withers PJ, Bray S. Texture development in Ti–6Al–4V linear friction welds. Mater. Sci. Eng. A, 2007, 459(1–2): 182.

[41]

Zhang CC, Zhang TC, Ji YJ, Huang JH. Effects of heat treatment on microstructure and microhardness of linear friction welded dissimilar Ti alloys. Trans. Nonferrous Met. Soc. China, 2013, 23(12): 3540.

[42]

Romero J, Attallah MM, Preuss M, Karadge M, Bray SE. Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds. Acta Mater., 2009, 57(18): 5582.

[43]

Dalgaard E, Wanjara P, Gholipour J, Cao X, Jonas JJ. Linear friction welding of a near-β titanium alloy. Acta Mater., 2012, 60(2): 770.

[44]

Li WY, Ma TJ, Yang SQ. Microstructure evolution and mechanical properties of linear friction welded Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) titanium alloy joints. Adv. Eng. Mater., 2010, 12(1–2): 35.

[45]

Chen X, Xie FQ, Ma TJ, Li WY, Wu XQ. Oxidation behavior of three different zones of linear friction welded Ti2AlNb alloy. Adv. Eng. Mater., 2016, 18(11): 1944.

[46]

Peng H, Wu YX, Zhang T, Chen SY, Zhang C. Residual stresses in linear friction welding of TC17 titanium alloy considering phase fraction. Trans. Nonferrous Met. Soc. China, 2024, 34(1): 184.

[47]

Rotundo F, Marconi A, Morri A, Ceschini A. Dissimilar linear friction welding between a SiC particle reinforced aluminum composite and a monolithic aluminum alloy: Microstructural, tensile and fatigue properties. Mater. Sci. Eng. A, 2013, 559, 852.

[48]

Lis A, Mogami H, Matsuda T, et al. Hardening and softening effects in aluminium alloys during high-frequency linear friction welding. J. Mater. Process. Technol., 2018, 255, 547.

[49]

Mogami H, Matsuda T, Sano T, Yoshida R, Hori H, Hirose A. High-frequency linear friction welding of aluminum alloys. Mater. Des., 2018, 139, 457.

[50]

Buffa G, Cammalleri M, Campanella D, Fratini L. Shear coefficient determination in linear friction welding of aluminum alloys. Mater. Des., 2015, 82, 238.

[51]

Yang XW, Li WY, Li JL, et al. Finite element modeling of the linear friction welding of GH4169 superalloy. Mater. Des., 2015, 87, 215.

[52]

Vairis A, Frost M. Modelling the linear friction welding of titanium blocks. Mater. Sci. Eng. A, 2000, 292(1): 8.

[53]

Vairis A, Frost M. High frequency linear friction welding of a titanium alloy. Wear, 1998, 217(1): 117.

[54]

Vairis A, Frost M. On the extrusion stage of linear friction welding of Ti 6Al 4V. Mater. Sci. Eng. A, 1999, 271, 477.

[55]

McAndrew AR, Colegrove PA, Bühr C, Flipo B CD, Vairis A. A literature review of Ti–6Al–4V linear friction welding. Prog. Mater. Sci., 2018, 92, 225.

[56]

Turner R, Gebelin JC, Ward RM, Reed RC. Linear friction welding of Ti–6Al–4V: Modelling and validation. Acta Mater., 2011, 59(10): 3792.

[57]

J.T. Liu, J.L. Li, X.G. Li, et al., Fatigue fracture behavior of a Ti17 joint under various heat treatment specifications prepared by linear friction welding, Mater. Charact., 205(2023), art. No. 113318.

[58]

Turner R, Ward RM, March R, Reed RC. The magnitude and origin of residual stress in Ti–6Al–4V linear friction welds: An investigation by validated numerical modeling. Metall. Mater. Trans. B, 2012, 43(1): 186.

[59]

Zhang X, Zhang JJ, Yao YK, et al. Anomalous enhancing effects of electric pulse treatment on strength and ductility of TC17 linear friction welding joints. J. Mater. Sci. Technol., 2024, 203, 155.

[60]

Dang ZY, Qin GL, Ma H, Geng PH. Multi-scale characterizations of microstructure and mechanical properties of Ti6242 alloy linear friction welded joint with post-welded heat treatment. Trans. Nonferrous Met. Soc. China, 2023, 33(4): 1114.

[61]

Ma TJ, Li WY, Yang SY. Impact toughness and fracture analysis of linear friction welded Ti–6Al–4V alloy joints. Mater. Des., 2009, 30(6): 2128.

[62]

Li WY, Wu H, Ma TJ, Yang CL, Chen ZW. Influence of parent metal microstructure and post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti–6Al–4V joint. Adv. Eng. Mater., 2012, 14(5): 312.

[63]

Grujicic M, Arakere G, Pandurangan B, Yen CF, Cheeseman BA. Process modeling of Ti–6Al–4V linear friction welding (LFW). J. Mater. Eng. Perform., 2012, 21(10): 2011.

[64]

Frankel P, Preuss M, Steuwer A, Withers PJ, Bray S. Comparison of residual stresses in Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo linear friction welds. Mater. Sci. Technol., 2009, 25(5): 640.

[65]

Yang XW, Li WY, Li J, Ma TJ, Guo J. FEM analysis of temperature distribution and experimental study of microstructure evolution in friction interface of GH4169 superalloy. Mater. Des., 2015, 84, 133.

[66]

Yang XW, Li WY, Feng Y, Yu SQ, Xiao B. Physical simulation of interfacial microstructure evolution for hot compression bonding behavior in linear friction welded joints of GH4169 superalloy. Mater. Des., 2016, 104, 436.

[67]

Yang XW, Li WY, Ma J, et al. Thermo-physical simulation of the compression testing for constitutive modeling of GH4169 superalloy during linear friction welding. J. Alloys Compd., 2016, 656, 395.

[68]

Geng PH, Qin GL, Zhou J, Zou ZD. Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process. J. Manuf. Process., 2018, 32, 469.

[69]

G.L. Qin, P.H. Geng, J. Zhou, and Z.D. Zou, Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy, Mater. Des., 172(2019), art. No. 107766.

[70]

Li WY, Ma TJ, Li JL. Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters. Mater. Des., 2010, 31(3): 1497.

[71]

Li WY, Shi SX, Wang FF, et al. Heat reflux in flash and its effect on joint temperature history during linear friction welding of steel. Int. J. Therm. Sci., 2013, 67, 192.

[72]

Song X, Xie M, Hofmann F, et al. Residual stresses in Linear Friction Welding of aluminium alloys. Mater. Des., 2013, 50, 360.

[73]

McAndrew AR, Colegrove PA, Addison AC, Flipo BCD, Russell MJ, Lee LA. Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds. Mater. Des., 2015, 87, 1087.

[74]

McAndrew AR, Colegrove PA, Addison AC, Flipo BCD, Russell MJ. Modelling the influence of the process inputs on the removal of surface contaminants from Ti–6Al–4V linear friction welds. Mater. Des., 2015, 66, 183.

[75]

P. Effertz, F. Fuchs, and N. Enzinger, 3D modelling of flash formation in linear friction welded 30CrNiMo8 steel chain, Metals, 7(2017), No. 10, art. No. 449.

[76]

Jedrasiak P, Shercliff HR, McAndrew AR, Colegrove PA. Thermal modelling of linear friction welding. Mater. Des., 2018, 156, 362.

[77]

Effertz PS, Fuchs F, Enzinger N. The influence of process parameters in linear friction welded 30CrNiMo8 small cross-section: A modelling approach. Sci. Technol. Weld. Join., 2019, 24(2): 121.

[78]

Müller JS, Rettenmayr M, Schneefeld D, Roder O, Fried W. FEM simulation of the linear friction welding of titanium alloys. Comput. Mater. Sci., 2010, 48(4): 749.

[79]

Fratini L, Buffa G, Campanella D, La Spisa D. Investigations on the linear friction welding process through numerical simulations and experiments. Mater. Des., 2012, 40, 285.

[80]

Grujicic M, Yavari R, Snipes JS, Ramaswami S, Yen CF, Cheeseman BA. Linear friction welding process model for carpenter custom 465 precipitation-hardened martensitic stainless steel. J. Mater. Eng. Perform., 2014, 23(6): 2182.

[81]

Li WY, Wang FF, Shi SX, Ma TJ, Li JL, Vairis A. 3D finite element analysis of the effect of process parameters on linear friction welding of mild steel. J. Mater. Eng. Perform., 2014, 23(11): 4010.

[82]

Grujicic M, Yavari R, Snipes JS, Ramaswami S. A linear friction welding process model for Carpenter Custom 465 precipitation-hardened martensitic stainless steel: a weld microstructure-evolution analysis. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2015, 229, 1997.

[83]

Buffa G, Campanella D, Pellegrino S, Fratini L. Weld quality prediction in linear friction welding of AA6082-T6 through an integrated numerical tool. J. Mater. Process. Technol., 2016, 231, 389.

[84]

McAndrew AR, Colegrove PA, Flipo BCD, Bühr C. 3D modelling of Ti–6Al–4V linear friction welds. Sci. Technol. Weld. Join., 2017, 22(6): 496.

[85]

Bühr C, Ahmad B, Colegrove PA, McAndrew AR, Guo H, Zhang X. Prediction of residual stress within linear friction welds using a computationally efficient modelling approach. Mater. Des., 2018, 139, 222.

[86]

Baffari D, Buffa G, Campanella D, Fratini L, Micari F. Single block 3D numerical model for linear friction welding of titanium alloy. Sci. Technol. Weld. Join., 2019, 24(2): 130.

[87]

Geng PH, Qin GL, Zhou J, Zou ZD. Finite element models of friction behaviour in linear friction welding of a Ni-based superalloy. Int. J. Mech. Sci., 2019, 152, 420.

[88]

Yonekura K, Shinohara T, Masaki K. Cost-effective estimation of flash extrusion and defects in linear friction welding using Voronoi diagrams. J. Manuf. Process., 2021, 68, 158.

[89]

Yang XW, Li WY, Xu YX, Dong XR, Hu KW, Zou YF. Performance of two different constitutive models and microstructural evolution of GH4169 superalloy. Math. Biosci. Eng., 2019, 16(2): 1034.

[90]

A. Vairis and N. Christakis, The development of a continuum framework for friction welding processes with the aid of micro-mechanical parameterisations, Int. J. Model. Identif. Contr., 2(2007), No. 4, art. No. 347.

[91]

P.H. Geng, G.L. Qin, and J. Zhou, A computational modeling of fully friction contact-interaction in linear friction welding of Ni-based superalloys, Mater. Des., 185(2020), art. No. 108244.

[92]

Geng PH, Qin GL, Li CG, Wang H, Zhou J. Study on the importance of thermo-elastic effects in FE simulations of linear friction welding. J. Manuf. Process., 2020, 56, 602.

[93]

P.H. Geng, H. Ma, M.X. Wang, et al., Dissimilar linear friction welding of Ni-based superalloys, Int. J. Mach. Tools Manuf., 191(2023), art. No. 104062.

[94]

M. Javidikia, M. Sadeghifar, H. Champliaud, and M. Jahazi, Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations, J. Adv. Join. Process., 8(2023), art. No. 100150.

[95]

F. Masoumi, D. Shahriari, H. Monajati, et al., Linear friction welding of AD730™ Ni-base superalloy: Process-microstructure-property interactions, Mater. Des., 183(2019), art. No. 108117.

[96]

S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo, and M. Jahazi, Grain size and misorientation evolution in linear friction welding of additively manufactured IN718 to forged superalloy AD730™, Mater. Charact., 171(2021), art. No. 110766.

[97]

Tabaie S, Aria F R, Flipo BCD, Jahazi M. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730TM: Evolution of strengthening phases. J. Matei. Sci. Technol., 2022, 96, 248.

[98]

Geng PH, Qin GL, Li TY, Zhou J, Zou ZD, Yang F. Microstructural characterization and mechanical property of GH4169 superalloy joints obtained by linear friction welding. J. Manuf. Process., 2019, 45, 100.

[99]

Geng PH, Qin GL, Ma H, Zhou J, Ma NS. Linear friction welding of dissimilar Ni-based superalloys: Microstructure evolution and thermo-mechanical interaction. J. Mater. Res. Technol., 2021, 11, 633.

[100]

Chamanfar A, Jahazi M, Gholipour J, Wanjara P, Yue S. Analysis of integrity and microstructure of linear friction welded Waspaloy. Mater. Charact., 2015, 104, 149.

[101]

Smith M, Levesque JB, Bichler L, Sediako D, Gholipour J, Wanjara P. Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches. Mater. Sci. Eng. A, 2017, 691, 168.

[102]

Masoumi F, Thébaud L, Shahriari D, et al. High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy. Mater. Sci. Eng. A, 2018, 710, 214.

[103]

X.W. Yang, C. Peng, T.J. Ma, et al., Finite element analysis of fatigue crack growth of linear friction welded superalloy joints, Acta Aeronaut. Astronaut. Sin., 43(2022), No. 2, art. No. 625004.

[104]

Chen JW, Salvati E, Uzun F, et al. An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy. J. Manuf. Process., 2020, 53, 190.

[105]

H. Pasiowiec, B. Dubiel, R. Dziurka, et al., Effect of creep deformation on the microstructure evolution of Inconel 625 nickel-based superalloy additively manufactured by laser powder bed fusion, Mater. Sci. Eng. A, 887(2023), art. No. 145742.

[106]

S.M. Wen, Z.C. Liu, D. Mi, S.H. Yang, B.C. Li, and C. Jiang, Novel fatigue life prediction method of a Ni-based superalloy welded joint considering defect and temperature, Int. J. Fatigue, 177(2023), art. No. 107924.

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/