Cycling performance of layered oxide cathode materials for sodium-ion batteries

Jinpin Wu, Junhang Tian, Xueyi Sun, Weidong Zhuang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1720-1744. DOI: 10.1007/s12613-023-2776-5
Invited Review

Cycling performance of layered oxide cathode materials for sodium-ion batteries

Author information +
History +

Abstract

Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity, high operating voltage, and simple synthesis. Cycling performance is an important criterion for evaluating the application prospects of batteries. However, facing challenges, including phase transitions, ambient stability, side reactions, and irreversible anionic oxygen activity, the cycling performance of layered oxide cathode materials still cannot meet the application requirements. Therefore, this review proposes several strategies to address these challenges. First, bulk doping is introduced from three aspects: cationic single doping, anionic single doping, and multi-ion doping. Second, homogeneous surface coating and concentration gradient modification are reviewed. In addition, methods such as mixed structure design, particle engineering, high-entropy material construction, and integrated modification are proposed. Finally, a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.

Keywords

sodium-ion battery / layered oxide materials / cycling performance / bulking doping / surface coating / concentration gradient / mixed structure / high-entropy

Cite this article

Download citation ▾
Jinpin Wu, Junhang Tian, Xueyi Sun, Weidong Zhuang. Cycling performance of layered oxide cathode materials for sodium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1720‒1744 https://doi.org/10.1007/s12613-023-2776-5

References

[1]
H. Xu, Q. Yan, W.J. Yao, C.S. Lee, and Y.B. Tang, Mainstream optimization strategies for cathode materials of sodium-ion batteries, Small Struct., 3(2022), No. 4, art. No. 2100217.
[2]
Fang YJ, Yu XY, Lou XW. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew. Chem. Int. Ed., 2017, 56(21): 5801,
CrossRef Google scholar
[3]
Wang J, Yuan YF, Rao XH, et al.. Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping. Int. J. Miner. Metall. Mater., 2023, 30(10): 1859,
CrossRef Google scholar
[4]
Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Physica B+C, 1980, 99(1–4): 81,
CrossRef Google scholar
[5]
Zhao CL, Avdeev M, Chen LQ, Hu YS. An O3-type Oxide with Low Sodium Content as the Phase-Transition-Free Anode for Sodium-Ion Batteries. Angew. Chem. Int. Ed., 2018, 57(24): 7056,
CrossRef Google scholar
[6]
Zhao CL, Wang QD, Yao ZP, et al.. Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370(6517): 708,
CrossRef Google scholar
[7]
X.H. Ma, H.L. Chen, and G. Ceder, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc., 158(2011), No. 12, art. No. A1307.
[8]
Komaba S, Nakayama T, Ogata A, et al.. Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Trans., 2009, 16(42): 43,
CrossRef Google scholar
[9]
Yabuuchi N, Kajiyama M, Iwatate J, et al.. 22-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater., 2012, 11(6): 512,
CrossRef Google scholar
[10]
Rong XH, Hu EY, Lu YX, et al.. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule, 2019, 3(2): 503,
CrossRef Google scholar
[11]
Wang Q, Mariyappan S, Rousse G, et al.. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater., 2021, 20(3): 353,
CrossRef Google scholar
[12]
J.Y. Hwang, J. Kim, T.Y. Yu, and Y.K. Sun, A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries, Adv. Energy Mater., 9(2019), No. 15, art. No. 1803346.
[13]
Wu ZH, Ni YX, Tan S, et al.. Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries. J. Am. Chem. Soc., 2023, 145(17): 9596,
CrossRef Google scholar
[14]
F.B. Spingler, M. Naumann, and A. Jossen, Capacity recovery effect in commercial LiFePO4/graphite cells, J. Electrochem. Soc., 167(2020), No. 4, art. No. 040526.
[15]
Q.W. Chen, S. Chen, L.L. Zhao, J.Z. Ma, H.S. Wang, and J.T. Zhang, Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery, Chem. Eng. J., 431(2022), art. No. 133961.
[16]
Cui XL, Wang SM, Ye XS, et al.. Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Storage Mater., 2022, 45: 1153,
CrossRef Google scholar
[17]
Pang WK, Kalluri S, Peterson VK, et al.. Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries. Chem. Mater., 2015, 27(8): 3150,
CrossRef Google scholar
[18]
Duffort V, Talaie E, Black R, Nazar LF. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of carbonate anions. Chem. Mater., 2015, 27(7): 2515,
CrossRef Google scholar
[19]
You Y, Dolocan A, Li WD, Manthiram A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Lett., 2019, 19(1): 182,
CrossRef Google scholar
[20]
Xu CL, Cai HR, Chen QL, Kong XQ, Pan HL, Hu YS. Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(4): 5338,
CrossRef Google scholar
[21]
Song TY, Wang CC, Lee CS. Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodium-ion batteries. Carbon Neutralization, 2022, 1(1): 68,
CrossRef Google scholar
[22]
Zhang Y, Wu MM, Ma JW, et al.. Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: Oxygen redox chemistry and oxygen release suppression. ACS Cent. Sci., 2020, 6(2): 232,
CrossRef Google scholar
[23]
Jiang MD, Qian GN, Liao XZ, et al.. Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling. J. Energy Chem., 2022, 69: 16,
CrossRef Google scholar
[24]
House R, Maitra U, Jin LY, et al.. What triggers oxygen loss in oxygen redox cathode materials?. Chem. Mater., 2019, 31(9): 3293,
CrossRef Google scholar
[25]
Liu YC, Wang CC, Zhao S, et al.. Mitigation of Jahn–Teller distortion and Na+/vacancy ordering in a distorted manganese oxide cathode material by Li substitution. Chem. Sci., 2021, 12(3): 1062,
CrossRef Google scholar
[26]
Wang LJ, Wang YZ, Zhao JB, Li YH, Wang JL, Yang XH. Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries. Ionics, 2019, 25(10): 4775,
CrossRef Google scholar
[27]
Zhang JL, Kim JB, Zhang J, et al.. Regulating Pseudo–Jahn–Teller effect and superstructure in layered cathode materials for reversible alkali-ion intercalation. J. Am. Chem. Soc., 2022, 144(17): 7929,
CrossRef Google scholar
[28]
Zhang JL, Wang WH, Wang W, Wang SW, Li BH. Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(25): 22051,
CrossRef Google scholar
[29]
Liu YL, Wang D, Li HY, et al.. Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries. J. Mater. Chem. A, 2022, 10(8): 3869,
CrossRef Google scholar
[30]
H. Fang, H.C. Ji, J.J. Zhai, et al., Mitigating jahn–teller effect in layered cathode material via interstitial doping for high-performance sodium-ion batteries, Small, 19(2023), No. 35, art. No. 2301360.
[31]
X.H. Yang, Y.Z. Wang, J.L. Wang, J.Y. Deng, and X. Zhang, Superior cyclability of Ce-doped P2-Na0.67Co0.20Mn0.80O2 cathode for sodium storage, J. Phys. Chem. Solids, 148(2021), art. No. 109750.
[32]
W.C. Qin, Y. Liu, J.F. Liu, Z.H. Yang, and Q.Q. Liu, Boosting the ionic transport and structural stability of Zn-doped O3-type NaNi1/3Mn1/3Fe1/3O2 cathode material for half/full sodium-ion batteries, Electrochim. Acta, 418(2022), art. No. 140357.
[33]
Zhang L, Yuan T, Soule LK, et al.. Enhanced ionic transport and structural stability of Nb-doped O3-NaFe0.55Mn04.5−xJNbxO2 cathode material for long-lasting sodium-ion batteries. ACS Appl. Energy Mater., 2020, 3(4): 3770,
CrossRef Google scholar
[34]
H. Zhao, J.Z. Li, W.P. Liu, et al., Integrated titanium-substituted air stable O3 sodium layered oxide electrode via a complexant assisted route for high capacity sodium-ion battery, Electrochim. Acta, 388(2021), art. No. 138561.
[35]
Feng YH, Cheng ZW, Xu CL, et al.. Low-cost Al-doped layered cathodes with improved electrochemical performance for rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(20): 23465,
CrossRef Google scholar
[36]
Feng J, Luo SH, Wang JC, et al.. Stable electrochemical properties of magnesium-doped co-free layered P2-type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries. ACS Sustainable Chem. Eng., 2022, 10(15): 4994,
CrossRef Google scholar
[37]
Ko W, Cho MK, Kang J, et al.. Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition. Energy Storage Mater., 2022, 46: 289,
CrossRef Google scholar
[38]
Wen YF, Fan JJ, Shi CG, et al.. Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-Type layered composite for sodium-ion batteries. Nano Energy, 2019, 60: 162,
CrossRef Google scholar
[39]
G.Q. Su, L.J. Li, Z. Shi, X.B. Ma, L. Ma, and Z.J. Cao, Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries, Appl. Surf. Sci., 608(2023), art. No. 155097.
[40]
L.J. Li, G.Q. Su, C. Lu, et al., Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries, Chem. Eng. J., 446(2022), art. No. 136923.
[41]
Li ZY, Ma XB, Sun K, He LF, Li YQ, Chen DF. Na2/3Li1/9[Ni2/9Li1/9Mn2/3]O2: A high-performance solid-solution reaction layered oxide cathode material for sodium-ion batteries. ACS Appl. Energy Mater., 2022, 5(1): 1126,
CrossRef Google scholar
[42]
Huang Q, Wang MY, Zhang L, et al.. Shear-resistant interface of layered oxide cathodes for sodium ion batteries. Energy Storage Mater., 2022, 45: 389,
CrossRef Google scholar
[43]
L.T. Yang, L.Y. Kuo, J.M. López del Amo, et al., Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries, Adv. Funct. Mater., 31(2021), No. 38, art. No. 2102939.
[44]
Y.S. Wang, Z.M. Feng, P.X. Cui, et al., Pillar-beam structures prevent layered cathode materials from destructive phase transitions, Nat. Commun., 12(2021), No. 1, art. No. 13.
[45]
C.C. Wang, L.J. Liu, S. Zhao, et al., Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun., 12(2021), No. 1, art. No. 2256.
[46]
G.X. Tang, Z.W. Chen, Z.Y. Lin, et al., K+-doped P2-Na0.67Fe0.5Mn0.5O2 cathode for highly enhanced rate performance sodium-ion battery, J. Alloys Compd., 947(2023), art. No. 169482.
[47]
Li XY, Miao JZ, Long HW, et al.. Sodium-storage performance of K+-intercalated NaxCu0.2Mn0.8O2. ACS Appl. Energy Mater., 2022, 5(3): 2758,
CrossRef Google scholar
[48]
Zhang Q, Huang YY, Liu Y, et al.. F-doped O3NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries. Sci. China Mater., 2017, 60(7): 629,
CrossRef Google scholar
[49]
H.L. Hu, H.C. He, R.K. Xie, et al., Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode, Nano Energy, 99(2022), art. No. 107390.
[50]
Liu GL, Xu WL, Wu JH, et al.. Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation. J. Energy Chem., 2023, 83: 53,
CrossRef Google scholar
[51]
Liu SQ, Wang BY, Zhang X, Zhao S, Zhang ZH, Yu HJ. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter, 2021, 4(5): 1511,
CrossRef Google scholar
[52]
K. Liu, S.S. Tan, J. Moon, et al., Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries, Adv. Energy Mater., 10(2020), No. 19, art. No. 2000135.
[53]
Chen H, Wu ZG, Zhong YJ, et al.. Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2−xFx cathode. Electrochim. Acta, 2019, 308: 64,
CrossRef Google scholar
[54]
Zhou CJ, Yang LC, Zhou CG, et al.. Fluorine-substituted O3-type NaNi0.4Mn0.25Ti0.3Co0.05O2−xFx cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage. J. Energy Chem., 2021, 60: 341,
CrossRef Google scholar
[55]
Kang WP, Ma P, Liu ZN, et al.. Tunable electrochemical activity of P2-Na0.6Mn0.7Ni0.3O2−xFx microspheres as high-rate cathodes for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces, 2021, 13(13): 15333,
CrossRef Google scholar
[56]
S.Y. Chu, D. Kim, G. Choi, et al., Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: Random Na extraction and Na-free layer formation, Angew. Chem. Int. Ed., 62(2023), No. 12, art. No. e202216174.
[57]
Yao HR, Wang PF, Gong Y, et al.. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc., 2017, 139(25): 8440,
CrossRef Google scholar
[58]
Shi HR, Li JY, Liu MJ, et al.. Multiple strategies toward advanced P2-type layered NaxMnO2 for low-cost sodium-ion batteries. ACS Appl. Energy Mater., 2021, 4(8): 8183,
CrossRef Google scholar
[59]
R. Qi, M.H. Chu, W.G. Zhao, et al., A highly-stable layered Fe/Mn-based cathode with ultralow strain for advanced sodium-ion batteries, Nano Energy, 88(2021), art. No. 106206.
[60]
Liu Q, Zheng W, Liu GY, et al.. Realizing high-performance cathodes with cationic and anionic redox reactions in high-sodium-content P2-type oxides for sodium-ion batteries. ACS Appl. Mater. Interfaces, 2023, 15(7): 9324,
CrossRef Google scholar
[61]
G.Q. Su, H.Q. Zheng, H. Chen, and S. Bao, Ca/Mg dual-doping P2-type Na0.67Ni0.17Co0.17Mn0.66O2 cathode material for sodium ion batteries, Mater. Lett., 331(2023), art. No. 133425.
[62]
K. Kubota, T. Asari, and S. Komaba, Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni–Mn and Na-vacancy ordering and electrochemical properties, Adv. Mater., 35(2023), No. 26, art. No. 2300714.
[63]
Lee I, Oh G, Lee S, et al.. Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Storage Mater., 2021, 41: 183,
CrossRef Google scholar
[64]
T.L. Zhang, H.C. Ji, X.H. Hou, et al., Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement, Nano Energy, 100(2022), art. No. 107482.
[65]
Y.X. Zhang, G.Q. Liu, C. Su, et al., Study on the influence of Cu/F dual-doping on the Fe–Mn based compound as cathode material for sodium ion batteries, J. Power Sources, 536(2022), art. No. 231511.
[66]
M.S. Chae, H.J. Kim, J. Lyoo, et al., Anomalous sodium storage behavior in Al/F dual-doped P2-type sodium manganese oxide cathode for sodium-ion batteries, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002205.
[67]
Zhou PF, Zhang J, Che ZN, et al.. Insights into the enhanced structure stability and electrochemical performance of Ti4+/F co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage. J. Energy Chem., 2022, 67: 655,
CrossRef Google scholar
[68]
Nie RH, Chen HX, Yang YT, Li C, Zhou HM. Highvoltage layered manganese-based oxide cathode with excellent rate capability enabled by K/F co-doping. ACS Appl. Energy Mater., 2023, 6(4): 2358,
CrossRef Google scholar
[69]
B. Peng, G.L. Wan, N. Ahmad, L. Yu, X.Y. Ma, and G.Q. Zhang, Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries Adv. Energy Mater., 13(2023), No. 27, art. No. 2300334.
[70]
Yang LY, Sun SW, Du K, et al.. Prompting structure stability of O3-NaNi0.5Mn0.5O2 via effective surface regulation based on atomic layer deposition. Ceram. Int., 2021, 47(20): 28521,
CrossRef Google scholar
[71]
M.Z. Leng, J.Q. Bi, W.L. Wang, et al., Ultrathin MgO coating on fabricated O3-NaNi0.45Mn0.3Ti0.2Zr0.05O2 composite cathode via magnetron sputtering for enhanced kinetic and durable sodium-ion batteries, J. Alloys Compd., 855(2021), art. No. 157533.
[72]
K. Kaliyappan, T. Or, Y.P. Deng, Y.F. Hu, Z.Y. Bai, and Z.W. Chen, Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone, Adv. Funct. Mater., 30(2020), No. 17, art. No. 1910251.
[73]
Bao S, Luo SH, Lu JL. Preparation and optimization of ZrO2 modified P2-type Na2/3Ni1/6Co1/6Mn2/3O2 with enhanced electrochemical performance as cathode for sodium ion batteries. Ceram. Int., 2020, 46(10): 16080,
CrossRef Google scholar
[74]
Wang YZ, Tang JT. CeO2-modified P2-Na–Co–Mn–O cathode with enhanced sodium storage characteristics. RSC Adv., 2018, 8(43): 24143,
CrossRef Google scholar
[75]
Chang YJ, Xie GH, Zhou YM, et al.. Enhancing storage performance of P2-type Na2/3Fe1/2Mn1/2O2 cathode materials by Al2O3 coating. Trans. Nonferrous Met. Soc. China, 2022, 32(1): 262,
CrossRef Google scholar
[76]
Y.Q. Shao, X.X. Wang, B.C. Li, et al., Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries, Electrochim. Acta, 442(2023), art. No. 141915.
[77]
Lu D, Yao ZJ, Zhong Y, et al.. Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(17): 15630,
CrossRef Google scholar
[78]
Kaliyappan K, Li GR, Yang L, Bai ZY, Chen ZW. An ion conductive polyimide encapsulation: New insight and significant performance enhancement of sodium based P2 layered cathodes. Energy Storage Mater., 2019, 22: 168,
CrossRef Google scholar
[79]
J.L. Lin, Q. Huang, K. Dai, et al., Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure, J. Power Sources, 552(2022), art. No. 232235.
[80]
T.C. Liu, L. Yu, J. Lu, et al., Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy, Nat. Commun., 12(2021), No. 1, art. No. 6024.
[81]
N.S. Gao, Y.W. Guo, Y.H. Chen, et al., Improved electrochemical performance of P2-type concentration-gradient cathode material Na0.65Ni0.16Co0.14Mn0.7O2 with Mn-rich core for sodium-ion batteries, J. Alloys Compd., 958(2023), art. No. 170386.
[82]
J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, I. Belharouak, and Y.K. Sun, Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries, Nat. Commun., 6(2015), art. No. 6865.
[83]
Bao S, Luo SH, Wang ZY, Yan SX, Wang Q, Li JY. Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167 Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. J. Power Sources, 2018, 396: 404,
CrossRef Google scholar
[84]
S.H. Guo, Q. Li, P. Liu, M.W. Chen, and H.S. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries, Nat. Commun., 8(2017), No. 1, art. No. 135.
[85]
C. Hakim, H.D. Asfaw, R. Younesi, D. Brandell, K. Edström, and I. Saadoune, Development of P2 or P2/P3 cathode materials for sodium-ion batteries by controlling the Ni and Mn contents in Na0.7CoxMnyNizO2 layered oxide, Electrochim. Acta, 438(2023), art. No. 141540.
[86]
B.W. Xiao, X. Liu, M. Song, et al., A general strategy for batch development of high-performance and cost-effective sodium layered cathodes, Nano Energy, 89(2021), art. No. 106371.
[87]
J.M. Feng, D. Fang, Z. Yang, et al., A novel P2/O3 composite cathode toward synergistic electrochemical optimization for sodium ion batteries, J. Power Sources, 553(2023), art. No. 232292.
[88]
Yu LZ, Cheng ZW, Xu K, et al.. Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode. Energy Storage Mater., 2022, 50: 730,
CrossRef Google scholar
[89]
Darga J, Manthiram A. Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(47): 52729,
CrossRef Google scholar
[90]
J. Lamb, K. Jarvis, and A. Manthiram, Molten-salt synthesis of O3-Type layered oxide single crystal cathodes with controlled morphology towards long-life sodium-ion batteries, Small, 18(2022), No. 43, art. No. 2106927.
[91]
Peng B, Zhou ZH, Xu J, et al.. Crystal facet design in layered oxide cathode enables low-temperature sodium-ion batteries. ACS Materials Lett., 2023, 5(8): 2233,
CrossRef Google scholar
[92]
Y. Xiao, P.F. Wang, Y.X. Yin, et al., Exposing{010}active facets by multiple-layer oriented stacking nanosheets for highperformance capacitive sodium-ion oxide cathode, Adv. Mater., 30(2018), No. 40, art. No. 1803765.
[93]
F.P. Zhang, Y. Lu, Y. Guo, et al., Highly stabilized single-crystal P2-type layered oxides obtained via rational crystal orientation modulation for sodium-ion batteries, Chem. Eng. J., 458(2023), art. No. 141515.
[94]
Bucher N, Hartung S, Nagasubramanian A, Cheah YL, Hoster HE, Madhavi S. Layered NaxMnO2+z in sodium ion batteries-influence of morphology on cycle performance. ACS Appl. Mater. Interfaces, 2014, 6(11): 8059,
CrossRef Google scholar
[95]
K. Kaliyappan, W. Xaio, T.K. Sham, and X.L. Sun, High tap density co and Ni containing P2-Na0.66MnO2 buckyballs: A promising high voltage cathode for stable sodium-ion batteries, Adv. Funct. Mater., 28(2018), No. 32, art. No. 1801898.
[96]
Wang S, Chen F, He XD, et al.. Self-template synthesis of NaCrO2 submicrospheres for stable sodium storage. ACS Appl. Mater. Interfaces, 2021, 13(10): 12203,
CrossRef Google scholar
[97]
Y.C. Liu, Q.Y. Shen, X.D. Zhao, et al., Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907837.
[98]
Liang LW, Sun X, Denis DK, et al.. Ultralong layered NaCrO2 nanowires: A competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(4): 4037,
CrossRef Google scholar
[99]
Kalluri S, Seng KH, Pang WK, et al.. Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces, 2014, 6(12): 8953,
CrossRef Google scholar
[100]
Aragón MJ, Lavela P, Ortiz G, Alcántara R, Tirado JL. Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries. J. Alloys Compd., 2017, 724: 465,
CrossRef Google scholar
[101]
Molenda J, Milewska A, Zając W, et al.. Impact of O3/P3 phase transition on the performance of the NaxTi1/6Mn1/6 Fe1/6Co1/6Ni1/6Cu1/6O2 cathode material for Na-ion batteries. J. Mater. Chem. A, 2023, 11(8): 4248,
CrossRef Google scholar
[102]
Zhao CL, Ding FX, Lu YX, Chen LQ, Hu YS. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed., 2020, 59(1): 264,
CrossRef Google scholar
[103]
Z.Y. Gu, J.Z. Guo, J.M. Cao, et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density, Adv. Mater., 34(2022), No. 14, art. No. 2110108.
[104]
Murty BS, Yeh JW, Ranganathan S. . High Entropy Alloys, 2014 Oxford Butterworth-Heinemann
[105]
A. Sarkar, Q.S. Wang, A. Schiele, et al., High-entropy oxides: Fundamental aspects and electrochemical properties, Adv. Mater., 31(2019), No. 26, art. No. 1806236.
[106]
Anand G, Wynn AP, Handley CM, Freeman CL. Phase stability and distortion in high-entropy oxides. Acta Mater., 2018, 146: 119,
CrossRef Google scholar
[107]
Walczak K, Plewa A, Ghica C, et al.. NaMn0.2Fe0.2Co0.2 Ni0.2Ti0.2O2 high-entropy layered oxide–experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Mater., 2022, 47: 500,
CrossRef Google scholar
[108]
Zhou PF, Che ZN, Liu J, et al.. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater., 2023, 57: 618,
CrossRef Google scholar
[109]
W.L. Xu, R.B. Dang, L. Zhou, et al., Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces, Adv. Mater., 35(2023), No. 42, art. No. 2301314.
[110]
X.Y. Li, L.W. Liang, M.S. Su, et al., Multi-level modifications enabling chemomechanically stable Ni-rich O3-Layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries, Adv. Energy Mater., 13(2023), No. 9, art. No. 2203701.
[111]
Feng XC, Li Y, Shi QH, et al.. A comprehensive modification enables the high rate capability of P2-Na0.75Mn0.67Ni0.33O2 for sodium-ion cathode materials. J. Energy Chem., 2022, 69: 442,
CrossRef Google scholar
[112]
S.Y. Zhao, Q.H. Shi, R.J. Qi, et al., NaTi2(PO4)3 modified O3-type NaNi1/3Fe1/3Mn1/3O2 as high rate and air stable cathode for sodium-ion batteries, Electrochim. Acta, 441(2023), art. No. 141859.
[113]
Wang HB, Ding FX, Wang YQ, et al.. In situ. ACS Energy Lett., 2023, 8(3): 1434,
CrossRef Google scholar
[114]
M.L. Xu, M.C. Liu, Z.Z. Yang, C. Wu, and J.F. Qian, Research progress on presodiation strategies for high energy sodium-ion batteries, Acta Phys. Chim. Sin., 39(2023), No. 3, art. No. 2210043.
[115]
P.Y. Li, N.Q. Hu, J.Y. Wang, S.C. Wang, and W.W. Deng, Recent progress and perspective: Na ion batteries used at low temperatures, Nanomaterials, 12(2022), No. 19, art. No. 3529.

Accesses

Citations

Detail

Sections
Recommended

/