Microstructures, corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni) alloys for plugging tool applications

Baosheng Liu, Jiali Wei, Shaohua Zhang, Yuezhong Zhang, Pengpeng Wu, Daqing Fang, Guorui Ma

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (4) : 697-711. DOI: 10.1007/s12613-023-2775-6
Research Article

Microstructures, corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni) alloys for plugging tool applications

Author information +
History +

Abstract

Mg-6Zn-2X(Fe/Cu/Ni) alloys were prepared through semi-continuous casting, with the aim of identifying a degradable magnesium (Mg) alloy suitable for use in fracturing balls. A comparative analysis was conducted to assess the impacts of adding Cu and Ni, which result in finer grains and the formation of galvanic corrosion sites. Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries, forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys. Pitting corrosion was observed in Mg-6Zn-2Fe, while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys. Among the tests, the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate (approximately 932.9 mm/a) due to its significant potential difference. Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength, making it a potential candidate material for degradable fracturing balls, effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.

Keywords

magnesium alloys / microstructure / micro-galvanic corrosion / mechanical properties

Cite this article

Download citation ▾
Baosheng Liu, Jiali Wei, Shaohua Zhang, Yuezhong Zhang, Pengpeng Wu, Daqing Fang, Guorui Ma. Microstructures, corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni) alloys for plugging tool applications. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(4): 697‒711 https://doi.org/10.1007/s12613-023-2775-6

References

[[1]]
Z.Y. Xu, G. Agrawal, and B.J. Salinas, Smart nanostructured materials deliver high reliability completion tools for gas shale fracturing, [in] the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 2011, art. No. SPE-146586-MS.
[[2]]
Themig D. New technologies enhance efficiency of horizontal, multistage fracturing. J. Petrol. Technol., 2011, 63(4): 26,
CrossRef Google scholar
[[3]]
D.R. Watson, D.G. Durst, T. Harris, and J.D. Contreras, One-trip multistage completion technology for unconventional gas formations, [in] the SPE Unconventional Resources Conference/Gas Technology Symposium, Calgary, Alberta, 2008, art. No. SPE-114973-MS.
[[4]]
C. Franco, R. Solares, H. Marri, and H. Hussain, The use of stagefrac new technology to complete and stimulate horizontal wells: Field case, [in] the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 2008, art. No. SPE-120806-MS.
[[5]]
N.J. Jin and Q.J. Zeng, Dissolvable tools in multistage stimulation, [in] the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia, 2017, art. No. SPE-186184-MS.
[[6]]
Xiao DH, Geng ZW, Chen L, et al.. Effects of alloying elements on microstructure and properties of magnesium alloys for tripling ball. Metall. Mater. Trans. A, 2015, 46(10): 4793,
CrossRef Google scholar
[[7]]
D. Kumar, E.D. Hernaez, J.S. Sanchez, and Z.Y. Xu, Temporary coating for dissolving frac-balls used in multi-stage fracturing systems, [in] the Offshore Technology Conference, Houston, Texas, 2018, art. No. OTC-28862-MS.
[[8]]
Li WX. . Magnesium and Magnesium Alloys, 2005 Changsha Central South University Press 501
[[9]]
Xie H, Wu GH, Zhang XL, et al.. Microstructural evolution and mechanical performance of cast Mg-3Nd-0.2Zn-0.5Zr alloy with Y additions. Trans. Nonferrous Met. Soc. China, 2022, 32(10): 3222,
CrossRef Google scholar
[[10]]
Geng ZW, Xiao DH, Chen L. Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys. J. Alloys Compd., 2016, 686: 145,
CrossRef Google scholar
[[11]]
H.C. Chen, T.C. Xie, Q. Liu, et al., Mechanism and prediction of aging time related thermal conductivity evolution of Mg-Zn alloys, J. Alloys Compd., 930(2023), art. No. 167392.
[[12]]
Yin M, Sun JL, Bao TY, et al.. Research progress in effect of alloying elements on corrosion resistance of magnesium alloys. J. Mater. Eng., 2021, 49(12): 28
[[13]]
Bairagi D, Duley P, Paliwal M, Mandal S. Influence of second phase precipitates on mechanical and in-vitro corrosion behaviour of Mg-4Zn-0.5Ca-0.8Mn alloy in optimum homogenized conditions. J. Magnes. Alloys, 2023, 11(4): 1343,
CrossRef Google scholar
[[14]]
Chen L, Wu Z, Xiao DH, Geng ZW, Zhou PF. Effects of copper on the microstructure and properties of Mg-17Al-3Zn alloys. Mater. Corros., 2015, 66(10): 1159,
CrossRef Google scholar
[[15]]
Pan H, Pan F, Wang X, et al.. High conductivity and high strength Mg-Zn-Cu alloy. Mater. Sci. Technol., 2014, 30(7): 759,
CrossRef Google scholar
[[16]]
Niu HY, Deng KK, Nie KB, Cao FF, Zhang XC, Li WG. Microstructure, mechanical properties and corrosion properties of Mg-4Zn-xNi alloys for degradable fracturing ball applications. J. Alloys Compd., 2019, 787: 1290,
CrossRef Google scholar
[[17]]
Bakhsheshi-Rad HR, Hamzah E, Fereidouni-Lotfabadi A, et al.. Microstructure and bio-corrosion behavior of Mg-Zn and Mg-Zn-Ca alloys for biomedical applications. Mater. Corros., 2014, 65(12): 1178,
CrossRef Google scholar
[[18]]
Liu BS, Kuang YF, Fang DQ, Chai YS, Zhang YZ. Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys. Int. J. Mater. Res., 2017, 108(4): 262,
CrossRef Google scholar
[[19]]
Zhang YZ, Wang XY, Kuang YF, Liu BS, Zhang KW, Fang DQ. Enhanced mechanical properties and degradation rate of Mg-3Zn-1Y based alloy by Cu addition for degradable fracturing ball applications. Mater. Lett., 2017, 195: 194,
CrossRef Google scholar
[[20]]
Boehlert CJ, Knittel K. The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0–4.4wt.% Zn. Mater. Sci. Eng. A, 2006, 417(1–2): 315,
CrossRef Google scholar
[[21]]
W.T. Liu, B.S. Liu, S.H. Zhang, et al., Microstructure and mechanical properties of extruded Mg-6Al-2X (X = Cu/Ni/Fe) alloy used degradable bridge plugs, Adv. Compos. Hybrid Mater., 6(2023), No. 5, art. No. 181.
[[22]]
Zhong SY, Zhang DF, Wang YQ, et al.. Microstructures, mechanical properties and degradability of Mg-2Gd-0.5(Cu/Ni) alloys: A comparison study. J. Mater. Sci. Technol., 2022, 128: 44,
CrossRef Google scholar
[[23]]
Shi ZM, Atrens A. An innovative specimen configuration for the study of Mg corrosion. Corros. Sci., 2011, 53(1): 226,
CrossRef Google scholar
[[24]]
Dai Y, Chen XH, Yan T, et al.. Improved corrosion resistance in AZ61 magnesium alloys induced by impurity reduction. Acta Metall. Sin. Engl. Lett., 2020, 33(2): 225,
CrossRef Google scholar
[[25]]
Gusieva K, Davies CHJ, Scully JR, Birbilis N. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev., 2015, 60(3): 169,
CrossRef Google scholar
[[26]]
Lotfpour M, Emamy M, Dehghanian C, Tavighi K. Influence of Cu addition on the structure, mechanical and corrosion properties of cast Mg-2%Zn alloy. J. Mater. Eng. Perform., 2017, 26(5): 2136,
CrossRef Google scholar
[[27]]
Lotfpour M, Dehghanian C, Emamy M, et al.. In-vitro corrosion behavior of the cast and extruded biodegradable Mg-Zn-Cu alloys in simulated body fluid (SBF). J. Magnes. Alloys, 2021, 9(6): 2078,
CrossRef Google scholar
[[28]]
Wan P, Fan XM, Hu SY, Wen HY. Harmful Effect of Fe on Properties of Magnesium Alloy and Neutr alizing Methods. Foundry Equip. Technol., 2008, 1(1): 11
[[29]]
Gu DD, Peng J, Wang JW, Liu ZT, Pan FS. Effect of Mn modification on the corrosion susceptibility of Mg-Mn alloys by magnesium scrap. Acta Metall. Sin. Engl. Lett., 2021, 34(1): 1,
CrossRef Google scholar
[[30]]
Esmaily M, Svensson JE, Fajardo S, et al.. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci., 2017, 89: 92,
CrossRef Google scholar
[[31]]
Bakhsheshi-Rad HR, Hamzah E, Medraj M, et al.. Effect of heat treatment on the microstructure and corrosion behaviour of Mg-Zn alloys. Mater. Corros., 2014, 65(10): 999,
CrossRef Google scholar
[[32]]
Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater., 1999, 1(1): 11,
CrossRef Google scholar
[[33]]
Shao XH, Yang ZQ, Ma XL. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure. Acta Mater., 2010, 58(14): 4760,
CrossRef Google scholar
[[34]]
Zhang CL, Zhang F, Song L, Zeng RC, Li SQ, Han EH. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy. J. Alloys Compd., 2017, 728: 815,
CrossRef Google scholar
[[35]]
Yan Y, Cao HW, Kang YJ, et al.. Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. J. Alloys Compd., 2017, 693: 1277,
CrossRef Google scholar
[[36]]
P. Duley, D. Bairagi, L.R. Bairi, T.K. Bandyopadhyay, and S. Mandal, Effect of microstructural evolution and texture change on the in-vitro bio-corrosion behaviour of hard-plate hot forged Mg-4Zn-0.5Ca-0.16Mn (wt%) alloy, Corros. Sci., 192(2021), art. No. 109860.
[[37]]
Wang Y, Wei M, Gao JC, Hu JZ, Zhang Y. Corrosion process of pure magnesium in simulated body fluid. Mater. Lett., 2008, 62(14): 2181,
CrossRef Google scholar
[[38]]
Orazem ME, Frateur I, Tribollet B, et al.. Dielectric properties of materials showing constant-phase-element (CPE) impedance response. J. Electrochem. Soc., 2013, 160(6): C215,
CrossRef Google scholar
[[39]]
Song GL, Atrens A, Wu XL, Zhang B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci., 1998, 40(10): 1769,
CrossRef Google scholar
[[40]]
P.R. Cha, H.S. Han, G.F. Yang, et al., Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Sci. Rep., 3(2013), art. No. 2367.
[[41]]
Zhang Y, Feng XH, Huang QY, et al.. The corrosion characteristics and mechanism of directionally solidified Mg-3Zn-xCa alloys. J. Magnes. Alloys, 2023, 11(10): 3673,
CrossRef Google scholar
[[42]]
Song MS, Zeng RC, Ding YF, et al.. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. J. Mater. Sci. Technol., 2019, 35(4): 535,
CrossRef Google scholar
[[43]]
Yao HB, Li Y, Wee ATS. An XPS investigation of the oxidation/corrosion of melt-spun Mg. Appl. Surf. Sci., 2000, 158(1–2): 112,
CrossRef Google scholar
[[44]]
J.C. Li, Y.X. Huang, F.F. Wang, X.C. Meng, L. Wan, and Z.B. Dong, Enhanced strength and ductility of friction-stir-processed Mg-6Zn alloys via Y and Zr co-alloying, Mater. Sci. Eng. A, 773(2020), art. No. 138877.
[[45]]
Fu W, Wang RH, Wu K, et al.. The influences of multiscale second-phase particles on strength and ductility of cast Mg alloys. J. Mater. Sci., 2019, 54(3): 2628,
CrossRef Google scholar
[[46]]
Bahmani A, Arthanari S, Shin KS. Formulation of corrosion rate of magnesium alloys using microstructural parameters. J. Magnes. Alloys, 2020, 8(1): 134,
CrossRef Google scholar
[[47]]
Liu M, Schmutz P, Uggowitzer PJ, Song GL, Atrens A. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys. Corros. Sci., 2010, 52(11): 3687,
CrossRef Google scholar
[[48]]
Pan H, Pang K, Cui FZ, et al.. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks’ solution. Corros. Sci., 2019, 157: 420,
CrossRef Google scholar
[[49]]
Wang YQ, Zhang DF, Zhong SY, et al.. Effect of minor Ni addition on the microstructure, mechanical properties and corrosion behavior of Mg-2Gd alloy. J. Mater. Res. Technol., 2022, 20: 3735,
CrossRef Google scholar
[[50]]
Yu HH, Xin YC, Wang MY, Liu Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol., 2018, 34(2): 248,
CrossRef Google scholar
[[51]]
H.B. Yang, Y.F. Chai, B. Jiang, et al., Simultaneous improvements in strength and ductility of as-extruded Mg-1.0Sn-0.5Zn alloy via Ce addition in combination with pre-twining deformation, J. Alloys Compd., 927(2022), art. No. 166879.
[[52]]
Chai YF, Jiang B, Song JF, et al.. Effects of Zn and Ca addition on microstructure and mechanical properties of as-extruded Mg-1.0Sn alloy sheet. Mater. Sci. Eng. A, 2019, 746: 82,
CrossRef Google scholar
[[53]]
Y. Jiang, Y.S. Li, and F. Liu, Microalloying-modulated strength-ductility trade-offs in as-cast Al-Mg-Si-Cu alloys, Mater. Sci. Eng. A, 855(2022), art. No. 143897.
[[54]]
Song YW, Han EH, Shan DY, Yim CD, You BS. The role of second phases in the corrosion behavior of Mg-5Zn alloy. Corros. Sci., 2012, 60: 238,
CrossRef Google scholar
[[55]]
Arrabal R, Pardo A, Merino MC, et al.. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution. Corros. Sci., 2012, 55: 301,
CrossRef Google scholar
[[56]]
Ma K, Liu SJ, Dai CN, et al.. Effect of Ni on the microstructure, mechanical properties and corrosion behavior of MgGd1Nix alloys for fracturing ball applications. J. Mater. Sci. Technol., 2021, 91: 121,
CrossRef Google scholar
[[57]]
J.H. Jiang, X. Geng, and X.B. Zhang, Mechanical and corrosion properties of Mg-Gd-Cu-Zr alloy for degradable fracturing ball applications, Metals, 13(2023), No. 3, art. No. 446.

Accesses

Citations

Detail

Sections
Recommended

/