Progress in the research on organic piezoelectric catalysts for dye decomposition
Zhaoning Yang, Xiaoxin Shu, Di Guo, Jing Wang, Hui Bian, Yanmin Jia
Progress in the research on organic piezoelectric catalysts for dye decomposition
Organic contaminants have posed a direct and substantial risk to human wellness and the environment. In recent years, piezoelectric catalysis has evolved as a novel and effective method for decomposing these contaminants. Although piezoelectric materials offer a wide range of options, most related studies thus far have focused on inorganic materials and have paid little attention to organic materials. Organic materials have advantages, such as being lightweight, inexpensive, and easy to process, over inorganic materials. Therefore, this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials, high-lighting their catalytic efficiency in addressing various pollutants. In addition, the applications of organic materials in piezoelectric catalysis for water decomposition to produce hydrogen, disinfect bacteria, treat tumors, and reduce carbon dioxide are presented. Finally, future developmental trends regarding the piezoelectric catalytic potential of organic materials are explored.
piezoelectric catalysis / piezoelectric material / dye decomposition / organic materials
[1] |
Y.M. Jia, X.X. Wang, Q.C. Zhang, and Z. Wu, Research progress in enhancement strategies and mechanisms of piezo-electro-chemical coupling, Acta Phys. Sin., 72(2023), No. 8, art. No. 087701.
|
[2] |
|
[3] |
Y. Wang, X.R. Wen, Y.M. Jia, et al., Piezo-catalysis for nondestructive tooth whitening, Nat. Commun., 11(2020), No. 1, art. No. 1328.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
X.L. Xu, L.B. Xiao, Z. Wu, et al., Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite, Nano Energy, 78(2020), art. No. 105351.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
X.F. Zhou, B. Shen, A. Lyubartsev, J.W. Zhai, and N. Hedin, Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis, Nano Energy, 96(2022), art. No. 107141.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
Z.Y. Yao, H.J. Sun, S.B. Xiao, Y.L. Hu, X.F. Liu, and Y. Zhang, Synergetic piezo-photocatalytic effect in a Bi2MoO6/BiOBr composite for decomposing organic pollutants, Appl. Surf. Sci., 560(2021), art. No. 150037.
|
[24] |
Z.Y. Li, Q.L. Zhang, L.K. Wang, J.Y. Yang, Y. Wu, and Y.M. He, Novel application of Ag/PbBiO2I nanocomposite in piezocatalytic degradation of rhodamine B via harvesting ultrasonic vibration energy, Ultrason. Sonochem., 78(2021), art. No. 105729.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
J. Yuan, X.Y. Huang, L.L. Zhang, et al., Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis, Appl. Catal. B, 278(2020), art. No. 119291.
|
[29] |
Y.D. Yao, Y.M. Jia, Q.C. Zhang, et al., Piezoelectric BaTiO3 with the milling treatment for highly efficient piezocatalysis under vibration, J. Alloys Compd., 905(2022), art. No. 164234.
|
[30] |
|
[31] |
|
[32] |
L.F. Xie, G.L. Wang, C. Jiang, F.P. Yu, and X. Zhao, Properties and applications of flexible poly(vinylidene fluoride)-based piezoelectric materials, Crystals, 11(2021), No. 6, art. No. 644.
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
J. Cheng, Y. Chen, J.W. Wu, X.R. Ji, and S.H. Wu, 3D printing of BaTiO3 piezoelectric ceramics for a focused ultrasonic array, Sensors, 19(2019), No. 19, art. No. 4078.
|
[40] |
|
[41] |
|
[42] |
|
[43] |
M.G. Kang, W.S. Jung, C.Y. Kang, and S.J. Yoon, Recent progress on PZT based piezoelectric energy harvesting technologies, Actuators, 5(2016), No. 1, art. No. 5.
|
[44] |
|
[45] |
K.K. Sappati and S. Bhadra, Piezoelectric polymer and paper substrates: A review, Sensors, 18(2018), No. 11, art. No. 3605.
|
[46] |
|
[47] |
S. Bayan, D. Bhattacharya, R.K. Mitra, and S.K. Ray, Self-powered flexible photodetectors based on Ag nanoparticle-loaded g-C3N4 nanosheets and PVDF hybrids: Role of plasmonic and piezoelectric effects, Nanotechnology, 31(2020), No. 36, art. No. 365401.
|
[48] |
|
[49] |
|
[50] |
|
[51] |
M. Khalifa, A. Mahendran, and S. Anandhan, Synergism of graphitic-carbon nitride and electrospinning on the physicochemical characteristics and piezoelectric properties of flexible poly(vinylidene fluoride) based nanogenerator, J. Polym. Res., 26(2019), No. 3, art. No. 73.
|
[52] |
|
[53] |
|
[54] |
|
[55] |
J. Song, B. Yang, W. Zeng, et al., Highly flexible, large-area, and facile textile-based hybrid nanogenerator with cascaded piezoelectric and triboelectric units for mechanical energy harvesting, Adv. Mater. Technol., 3(2018), No. 6, art. No. 1800016.
|
[56] |
|
[57] |
Y. Yang, H. Pan, G.Z. Xie, et al., Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring, Sens. Actuat. A Phys., 301(2020), art. No. 111789.
|
[58] |
|
[59] |
K.M. Shi, B. Chai, H.Y. Zou, et al., Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators, Nano Energy, 80(2021), art. No. 105515.
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
C.Q. Gao, Z.H. Long, T.Y. Zhong, S. Liang, and L.L. Xing, A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film, J. Phys. D: Appl. Phys., 55(2022), No. 19, art. No. 194004.
|
[65] |
P. Gowdhaman, V. Annamalai, H.M. Pandya, and P.R. Kumar, Significance of micro and nano PZT particles on dielectric and piezoelectric properties of PZT-PVDF composites, Int. J. Adv. Sci. Res., 2(2016), No. 3, art. No. 64.
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
B. Bagchi, N.A. Hoque, N. Janowicz, S. Das, and M.K. Tiwari, Re-usable self-poled piezoelectric/piezocatalytic films with exceptional energy harvesting and water remediation capability, Nano Energy, 78(2020), art. No. 105339.
|
[77] |
W. Ma, B.H. Yao, W. Zhang, Y.Q. He, Y. Yu, and J.F. Niu, Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets, Chem. Eng. J., 415(2021), art. No. 129000.
|
[78] |
|
[79] |
J.D. Shi, W. Zeng, Z.H. Dai, et al., Piezocatalytic foam for highly efficient degradation of aqueous organics, Small Sci., 1(2021), No. 2, art. No. 2000011.
|
[80] |
|
[81] |
L.C. Wan, W.R. Tian, N.J. Li, et al., Hydrophilic porous PVDF membrane embedded with BaTiO3 featuring controlled oxygen vacancies for piezocatalytic water cleaning, Nano Energy, 94(2022), art. No. 106930.
|
[82] |
|
[83] |
|
[84] |
|
[85] |
C. Porwal, S. Verma, M. Kumar, V.S. Chauhan, and R. Vaish, Bismuth vanadate-reduced graphene oxide-polyvinylidene fluoride electrospun composite membrane for piezo-photocatalysis, Nano Struct. Nano Objects, 34(2023), art. No. 100969.
|
[86] |
F. Orudzhev, S. Ramazanov, D. Sobola, et al., Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation, Nano Energy, 90(2021), art. No. 106586.
|
[87] |
|
[88] |
J.W. Fu, J.G. Yu, C.J. Jiang, and B. Cheng, g-C3N4-based heterostructured photocatalysts, Adv. Energy Mater., 8(2018), No. 3, art. No. 1701503.
|
[89] |
|
[90] |
H. Lei, Q.S. He, M.X. Wu, Y.Y. Xu, P.F. Sun, and X.P. Dong, Piezoelectric polarization promoted spatial separation of photoexcited electrons and holes in two-dimensional g-C3N4 nanosheets for efficient elimination of chlorophenols, J. Hazard. Mater., 421(2022), art. No. 126696.
|
[91] |
R.D. Tang, D.X. Gong, Y.Y. Zhou, et al., Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light, Appl. Catal. B, 303(2022), art. No. 120929.
|
[92] |
Y.Q. Shao, C.C. Liu, H.R. Ma, et al., Piezocatalytic performance difference of graphitic carbon nitride (g-C3N4) derived from different precursors, Chem. Phys. Lett., 801(2022), art. No. 139748.
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
B.L. Xu, Z.J. Huang, Y.H. Liu, S.S. Li, and H.Y. Liu, MOF-based nanomedicines inspired by structures of natural active components, Nano Today, 48(2023), art. No. 101690.
|
[98] |
Z.H. Kang, M.S. Chen, E.Z. Lin, et al., Functionalized MIL-53 and its derivatives modified Bi2WO6 as effective piezocatalysts and membranes for adsorption and decomposition of organic pollutants, Sep. Purif. Technol., 306(2023), art. No. 122618.
|
[99] |
S.H. Dong, L.Y. Wang, W.Y. Lou, et al., Bi-MOFs with two different morphologies promoting degradation of organic dye under simultaneous photo-irradiation and ultrasound vibration treatment, Ultrason. Sonochem., 91(2022), art. No. 106223.
|
[100] |
|
[101] |
|
[102] |
Z.M. Guo, N. Li, S.X. Zuo, et al., Construction of a novel metal–organic framework adenine-UiO-66 piezocatalyst for efficient diclofenac removal, Sep. Purif. Technol., 289(2022), art. No. 120743.
|
[103] |
|
[104] |
Z.L. Wu, Y.P. Wang, Z.K. Xiong, et al., Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine, Appl. Catal. B, 277(2020), art. No. 119136.
|
[105] |
Y. Liu, H. Cheng, M. Cheng, et al., The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment, Chem. Eng. J., 417(2021), art. No. 127914.
|
[106] |
L.J. Ruan, Y.M. Jia, J.F. Guan, et al., Highly piezocatalysis of metal-organic frameworks material ZIF-8 under vibration, Sep. Purif. Technol., 283(2022), art. No. 120159.
|
[107] |
|
[108] |
Q. Guo, Y. Huang, M.D. Xu, et al., PTFE porous membrane technology: A comprehensive review, J. Membr. Sci., 664(2022), art. No. 121115.
|
[109] |
J.X. Zhu, Y.L. Zhu, and X.H. Wang, A hybrid piezoelectric and triboelectric nanogenerator with PVDF nanoparticles and leaf-shaped microstructure PTFE film for scavenging mechanical energy, Adv. Mater. Interfaces, 5(2018), No. 2, art. No. 1700750.
|
[110] |
Y.F. Wang, Y.M. Xu, S.S. Dong, et al., Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species, Nat. Commun., 12(2021), No. 1, art. No. 3508.
|
[111] |
|
[112] |
L.Y. He, L.J. Wu, S.T. Shen, et al., A novel Fe-PTFE magnetic composite prepared by ball milling for the efficient degradation of imidacloprid: Insights into interaction mechanisms based on ultrasonic piezoelectric catalysis, Sci. Total Environ., 864(2023), art. No. 161082.
|
[113] |
|
[114] |
|
[115] |
J.F. Guan, Y.M. Jia, T. Chang, et al., Highly efficient piezocatalysis of the heat-treated cellulose nanocrystal for dye decomposition driven by ultrasonic vibration, Sep. Purif. Technol., 286(2022), art. No. 120450.
|
[116] |
C. Hu, F. Chen, Y.G. Wang, et al., Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong In-plane polarization, Adv. Mater., 33(2021), No. 24, art. No. e2101751.
|
[117] |
C. Hu, J.C. Hu, Z.J. Zhu, et al., Orthogonal charge transfer by precise positioning of silver single atoms and clusters on carbon nitride for efficient piezocatalytic pure water splitting, Angew. Chem. Int. Ed., 61(2022), No. 43, art. No. e202212397.
|
[118] |
T.T. Xu, Z.H. Xia, H.G. Li, P. Niu, S.L. Wang, and L. Li, Constructing crystalline g - C3N4/g - C3N4−xSx isotype heterostructure for efficient photocatalytic and piezocatalytic performances, Energy Environ. Mater., 6(2023), No. 2, art. No. e12306.
|
[119] |
|
[120] |
|
[121] |
M.L. Xu, M. Lu, G.Y. Qin, et al., Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting, Angew. Chem. Int. Ed., 61(2022), No. 44, art. No. e202210700.
|
[122] |
R.Y. Wang, T. Zhou, X.W. Zhang, and L. Liu, Force-responsive antibiofouling strategy based on the ultrasound-controlled piezoelectric effect, Appl. Surf. Sci., 603(2022), art. No. 154467.
|
[123] |
|
[124] |
K. Xie, Z.A. Zhou, Y. Guo, et al., Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity, Adv. Healthc. Mater., 8(2019), No. 5, art. No. 1801465.
|
[125] |
A.A. Issa, M.A. Al-Maadeed, A.S. Luyt, D. Ponnamma, and M.K. Hassan, Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles, C—J. Carbon Res., 3(2017), No. 4, art. No. 30.
|
[126] |
|
[127] |
C.J. Shuai, G.F. Liu, Y.W. Yang, et al., A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold, Nano Energy, 74(2020), art. No. 104825.
|
[128] |
|
[129] |
S.L. Zhang, C. Liu, Z.X. Li, et al., Sonoactivated cascade Fenton reaction enhanced by synergistic modulation of electron–hole separation for improved tumor therapy, Adv. Healthc. Mater., 12(2023), No. 26, art. No. e2300982.
|
[130] |
|
[131] |
H.N. Huang, R. Shi, Z.H. Li, J.Q. Zhao, C.L. Su, and T.R. Zhang, Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary, Angew. Chem. Int. Ed., 61(2022), No. 17, art. No. e202200802.
|
[132] |
Q.L. Xu, Z.H. Xia, J.M. Zhang, et al., Recent advances in solar-driven CO2 reduction over g-C3N4-based photocatalysts, Carbon Energy, 5(2023), No. 2, art. No. e205.
|
[133] |
|
[134] |
Z.J. Wei, T. Ji, X.M. Zhou, et al., Synergistic enhancement of photocatalytic CO2 reduction by built-in electric field/piezoelectric effect and surface plasmon resonance via PVDF/CdS/Ag heterostructure, Small, 19(2023), No. 52, art. No. e2304202.
|
[135] |
C. Hu, H.Y. Sun, X.M. Jia, H.L. Lin, J. Cao, and S.F. Chen, Piezoelectric polarization and empty conduction band of zinc sulfide: Structure modulation on graphitic carbon nitride for carbon dioxide reduction to methane, ChemPhotoChem, 6(2022), No. 11, art. No. e202200150.
|
[136] |
Q.C. Zhang, Y.M. Jia, W.W. Wu, et al., Review on strategies toward efficient piezocatalysis of BaTiO3 nanomaterials for wastewater treatment through harvesting vibration energy, Nano Energy, 113(2023), art. No. 108507.
|
[137] |
|
[138] |
M.D. Zhu, S.Q. Li, H.F. Zhang, et al., Diffused phase transition boosted dye degradation with Ba (ZrxTi1−x)O3 solid solutions through piezoelectric effect, Nano Energy, 89(2021), art. No. 106474.
|
/
〈 | 〉 |