Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells: Experimental and numerical study
Shuo Han , Tao Wei , Sijia Wang , Yanlong Zhu , Xingtong Guo , Liang He , Xiongzhuang Li , Qing Huang , Daifen Chen
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (3) : 427 -442.
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells: Experimental and numerical study
Solid oxide fuel cells (SOFCs) have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies. However, traditional SOFCs suffer from having a higher volume, current leakage, complex connections, and difficulty in gas sealing. To solve these problems, Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support, resulting in the tubular segmented-in-series solid oxide fuel cells (SIS-SOFCs), which achieved higher output voltage. This work systematically reviews recent advances in the structures, preparation methods, performances, and stability of tubular SIS-SOFCs in experimental and numerical studies. Finally, the challenges and future development of tubular SIS-SOFCs are also discussed. The findings of this work can help guide the direction and inspire innovation of future development in this field.
solid oxide fuel cell / segmented-in-series / tubular / experimental study / numerical study
| [1] |
|
| [2] |
A. Hauch, R. Küngas, P. Blennow, et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(2020), art. No. eaba6118. |
| [3] |
|
| [4] |
T. Wei, Y.Y. Zhou, C. Sun, et al., An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities, Nano Res., (2023). Doi: https://doi.org/10.1007/112274-023-6187-8. |
| [5] |
|
| [6] |
T. Wei, J.H. Lu, P. Zhang, et al., Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett., 34(2023), No. 8, art. No. 107947. |
| [7] |
T. Wei, J.H. Lu, P. Zhang, et al., An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity, Chin. Chem. Lett., (2023), art. No. 109122. |
| [8] |
X.C. Ge, H.X. Li, J. Li, et al., High-entropy doping boosts ion/electronic transport of Na4Fe3(PO4)2(P2O7)/C cathode for superior performance sodium-ion batteries, Small, 19(2023), No. 37, art. No. e2302609. |
| [9] |
W.J. Meng, Z.Z. Dang, D.S. Li, and L. Jiang, Long-cycle-life sodium-ion battery fabrication via a unique chemical bonding interface mechanism, Adv. Mater., 35(2023), No. 30, art. No. e2301376. |
| [10] |
|
| [11] |
Q. Zhang, S.J. Wang, Y. Liu, M.T. Wang, R.T. Chen, Z.Y. Zhu, X.Y. Qiu, S.D. Xu, and T. Wei, UiO - 66 - NH2@67 core–shell metal–organic framework as fillers in solid composite electrolytes for high - performance all - solid - state lithium metal batteries, Energy Technol., 11(2023), No. 4, art. No. 2201438. |
| [12] |
|
| [13] |
|
| [14] |
Q. Zhang, T. Wei, J.H. Lu, et al., The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem., 926(2022), No. 9, art. No. 116935. |
| [15] |
|
| [16] |
|
| [17] |
A.G. Olabi, T. Wilberforce, and M. Ali Abdelkareem, Fuel cell application in the automotive industry and future perspective, Energy, 214(2021), art. No. 118955. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
J.X. Peng, J. Huang, X.L. Wu, Y.W. Xu, H.C. Chen, and X. Li, Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review, J. Power Sources, 505(2021), art. No. 230058. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
D.F. Chen, Y.L. Zhu, S. Han, L. Anatoly, M. Andrey, and L. Lu, Investigate the effect of a parallel-cylindrical flow field on the solid oxide fuel cell stack performance by 3D multiphysics simulating, J. Energy Storage, 60(2023), art. No. 106587. |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
O. Hodjati-Pugh, A. Dhir, and R. Steinberger-Wilckens, The development of current collection in micro-tubular solid oxide fuel cells—A review, Appl. Sci., 11(2021), No. 3, art. No. 1077. |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
H. Yoshida, T. Seyama, T. Sobue, and S. Yamashita, Development of residential SOFC CHP system with flatten tubular segmented-in-series cells stack, ECS Trans., 35(2011), No. 1, art. No. 97. |
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
Y.H. Tang, Y.K. Lin, D.M. Ford, et al., A review on models and simulations of membrane formation via phase inversion processes, J. Membr. Sci., 640(2021), art. No. 119810. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
Y.Z. Hu, J.T. Gao, C.X. Li, and C.J. Li, Thermally sprayed MCO/FeCr24 interconnector with improved stability for tubular segmented-in-series SOFCs, Appl. Surf. Sci., 587(2022), art. No. 152861. |
| [69] |
|
| [70] |
T.S. Lai, J. Liu, and S.A. Barnett, Effect of cell width on segmented-in-series SOFCs, Electrochem. Solid-State Lett., 7(2004), No. 4, art. No. A78. |
| [71] |
|
| [72] |
|
| [73] |
D.A. Cui, Y.L. Ji, C. Chang, Z. Wang, X. Xiao, and Y.T. Li, Influence of structure size on voltage uniformity of flat tubular segmented-in-series solid oxide fuel cell, J. Power Sources, 460(2020), art. No. 228092. |
| [74] |
J.H. Fan, J.X. Shi, R.Y. Zhang, Y.Q. Wang, and Y.X. Shi, Numerical study of a 20-cell tubular segmented-in-series solid oxide fuel cell, J. Power Sources, 556(2023), art. No. 232449. |
| [75] |
A.D. Shi, Y.P. Kong, Z. Li, Y.H. Wang, S.L. Fan, and Z.L. Jin, Performance analysis of series connected cathode supported tubular SOFCs, Int. J. Electrochem. Sci., 18(2023), No. 5, art. No. 100126. |
| [76] |
O. Hodjati-Pugh, J. Andrews, A. Dhir, and R. Steinberger-Wilckens, Analysis of current collection in micro-tubular solid oxide fuel cells: An empirical and mathematical modelling approach for minimised ohmic polarisation, J. Power Sources, 494(2021), art. No. 229780. |
| [77] |
|
| [78] |
B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, and K. Eguchi, Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells, J. Electrochem. Soc., 157(2010), No. 12, art. No. B1858. |
| [79] |
B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, and K. Eguchi, Gas transport impedance in segmented-in-series tubular solid oxide fuel cell, J. Electrochem. Soc., 158(2011), No. 2, art. No. B215. |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
K. Horiuchi, K. Nakamura, Y. Matsuzaki, et al., Durability tests of flatten tubular segmented-in-series type SOFC stacks for intermediate temperature operation, ECS Trans., 35(2011), No. 1, art. No. 217. |
| [86] |
|
/
| 〈 |
|
〉 |