Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption

Xuanqi Yang, Honghan Wang, Jing Chen, Qingda An, Zuoyi Xiao, Jingai Hao, Shangru Zhai, Junye Sheng

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (4) : 812-824. DOI: 10.1007/s12613-023-2768-5
Research Article

Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption

Author information +
History +

Abstract

Electromagnetic wave (EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health. However, obtaining lightweight, high-performance, and broadband EMW-absorbing material remains an overwhelming challenge. Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials. Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses, low costs, abundant resources, and light weights. Here, FeNi alloy nanosheet array/Lycopodium spore-derived carbon (FeNi/LSC) was prepared through a simple hydrothermal and carbonization method. FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array, sponge-like structure, capability for impedance matching, and improved dielectric/magnetic losses. As expected, FeNi/LSC exhibited the minimum reflection loss of −58.3 dB at 1.5 mm with 20wt% filler content and a widely effective absorption bandwidth of 4.92 GHz. FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials.

Keywords

spore-derived carbon / FeNi alloy nanosheet array / multi-interface heterostructures / synergistic effect / efficient electromagnetic wave absorption

Cite this article

Download citation ▾
Xuanqi Yang, Honghan Wang, Jing Chen, Qingda An, Zuoyi Xiao, Jingai Hao, Shangru Zhai, Junye Sheng. Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(4): 812‒824 https://doi.org/10.1007/s12613-023-2768-5

References

[[1]]
H.L. Lv, Z.H. Yang, H.G. Pan, and R.B. Wu, Electromagnetic absorption materials: Current progress and new frontiers, Prog. Mater. Sci., 127(2022), art. No. 100946.
[[2]]
Z.D. Zhang, Y.M. Zhao, G.H. Fan, et al., Paper-based flexible metamaterial for microwave applications, EPJ Appl. Metamater., 8(2021), art. No. 6.
[[3]]
Srivastava SK, Manna K. Recent advancements in the electromagnetic interference shielding performance of nano-structured materials and their nanocomposites: A review. J. Mater. Chem. A, 2022, 10(14): 7431,
CrossRef Google scholar
[[4]]
Wu F, Yang K, Li Q, et al.. Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon, 2021, 173: 918,
CrossRef Google scholar
[[5]]
Zhu HH, Liang J, Chen JF, et al.. Rational construction of yolk-shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption. J. Colloid Interface Sci., 2022, 626: 775,
CrossRef Pubmed Google scholar
[[6]]
B.L. Wang, Y.G. Fu, J. Li, Q. Wu, X.Y. Wang, and T. Liu, Construction of Co@C nanocapsules by one-step carbon reduction of single-crystal Co3O4 nanoparticles: Ultra-wideband microwave absorber verified via coaxial and arch methods, Chem. Eng. J., 445(2022), art. No. 136863.
[[7]]
W. Tian, J.Y. Li, Y.F. Liu, et al. Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anticorrosion and ultra-high microwave absorption properties in low-frequency bands, Nano Micro Lett., 13(2021), No. 1, art. No. 161.
[[8]]
H.H. Niu, X.Y. Tu, S. Zhang, et al., Engineered core–shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials, Chem. Eng. J., 446(2022), art. No. 137260.
[[9]]
Liu TH, Shang KX, Miao C, Ouyang J. Multiple interface coupling in halloysite/reduced graphene oxide/cobalt nickel composites for high-performance electromagnetic wave absorption. J. Colloid Interface Sci., 2022, 628: 858,
CrossRef Pubmed Google scholar
[[10]]
X.X. Wang, F.F. You, X.Y. Wen, K.R. Wang, G.X. Tong, and W.H. Wu, Doping Ce(OH)CO3 laminated dendrites with Fe, Co and Ni for defect steered wide-frequency microwave absorption, Chem. Eng. J., 445(2022), art. No. 136431.
[[11]]
Zhou Q, Shi TT, Xue B, et al.. Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design. Int. J. Miner. Metall. Mater., 2023, 30(6): 1198,
CrossRef Google scholar
[[12]]
Zhang R, Mu CP, Wang BC, et al.. Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2023, 30(3): 485,
CrossRef Google scholar
[[13]]
Wen B, Yang GR, Zhou XY, Ding SJ. Intelligent diffusion regulation induced in situ growth of cobalt nanoclusters on carbon nanotubes for excellent electromagnetic wave absorption. J. Colloid Interface Sci., 2023, 634: 74,
CrossRef Pubmed Google scholar
[[14]]
Wang YC, Yao LH, Zheng Q, Cao MS. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., 2022, 15(7): 6751,
CrossRef Google scholar
[[15]]
S.K. Hou, Y. Wang, F. Gao, et al., In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber, Mater. Des., 225(2023), art. No. 111576.
[[16]]
Jin X, Al-Qatatsheh A, Subhani K, Salim NV. An ultralight, elastic carbon nanofiber aerogel with efficient energy storage and sorption properties. Nanoscale, 2022, 14(18): 6854,
CrossRef Pubmed Google scholar
[[17]]
Wang DD, Zhang MY, Guo Y, et al.. Facile preparation of a cellulose derived carbon/BN composite aerogel for superior electromagnetic wave absorption. J. Mater. Chem. C, 2022, 10(13): 5311,
CrossRef Google scholar
[[18]]
Lv H, Xiao ZY, Zhai SR, Wang XT, Hao JA, An QD. Designed formation of C/Fe3O4@Ni(OH)2 cathode with enhanced pseudocapacitance for asymmetric supercapacitors. J. Colloid Interface Sci., 2023, 635: 176,
CrossRef Pubmed Google scholar
[[19]]
H. Lv, Z.Y. Xiao, S.R. Zhai, et al., Ni3S2 nanoparticles encapsulated in S-doped biomass-derived hierarchically porous carbon as an advanced electrode for excellent hybrid supercapacitors performance, Ind. Crops Prod., 194(2023), art. No. 116320.
[[20]]
H. Lv, Z.Y. Xiao, S.R. Zhai, X.T. Wang, J.G. Hao, and Q.D. An, CuxS particles loaded on S-doped 3D hierarchical porous carbon as an efficient electrode for superior asymmetric super-capacitors, J. Alloys Compd., 945(2023), art. No. 169332.
[[21]]
H.D. Sun, L.L. Zheng, Y.R. Xi, S.R. Zhai, Q.D. An, and Z.Y. Xiao, Nickel-iron sulfide nanoparticles supported on biomass-derived N-doped hierarchical porous carbon as a robust electrode for supercapacitors, Electrochim. Acta, 466(2023), art. No. 143053.
[[22]]
Lu ZX, Ren F, Guo ZZ, et al.. Facile construction of core-shell Carbon@CoNiO2 derived from yeast for broadband and high-efficiency microwave absorption. J. Colloid Interface Sci., 2022, 625: 415,
CrossRef Pubmed Google scholar
[[23]]
Yusuf JY, Soleimani H, Yahya N, et al.. Eletromagnetic wave absorption of coconut fiber-derived porous activated carbon. Bol. Soc. Esp. Ceram. Vidrio, 2022, 61(5): 417,
CrossRef Google scholar
[[24]]
Zhai NX, Luo JH, Xiao MW, Zhang YC, Yan WX, Xu Y. In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption. Carbon, 2023, 203: 416,
CrossRef Google scholar
[[25]]
Li J, Wang L, Zhang D, et al.. Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Mater. Chem. Front., 2017, 1(9): 1786,
CrossRef Google scholar
[[26]]
Pan JJ, Tu WJ, Ma SH, et al.. Improvement of multiple attenuation characteristics of two-dimensional lamellar ferrocobalt@carbon nanocomposites as excellent electromagnetic wave absorbers. Dalton Trans., 2022, 51(25): 9793,
CrossRef Pubmed Google scholar
[[27]]
Li Y, Qin YS, Wu GL, Zheng YC, Ban QF. Metal-co-ordination-driven self-assembly synthesis of porous iron/carbon composite for high-efficiency electromagnetic wave absorption. J. Colloid Interface Sci., 2022, 623: 1002,
CrossRef Google scholar
[[28]]
Wu P, Wang ZY, Bolan NS, Wang HL, Wang YJ, Chen WF. Visualizing the development trend and research frontiers of biochar in 2020: A scientometric perspective. Biochar, 2021, 3(4): 419,
CrossRef Google scholar
[[29]]
D.M. Zhang, W. He, G.Q. Quan, et al., Sterculia lychnophora seed-derived porous carbon@CoFe2O4 composites with efficient microwave absorption performance, Appl. Surf. Sci., 607(2023), art. No. 155027.
[[30]]
Lv JJ, Wang LM, Li RS, et al.. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe-LDH for oxygen evolution reaction. ACS Catal., 2021, 11(23): 14338,
CrossRef Google scholar
[[31]]
Jin YY, Tian K, Wei L, Zhang XY, Guo X. Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. J. Mater. Chem. A, 2016, 4(41): 15968,
CrossRef Google scholar
[[32]]
Cui C, Bai WH, Jiang S, et al.. FeNi LDH/loofah sponge-derived magnetic FeNi alloy nanosheet array/porous carbon hybrids with efficient electromagnetic wave absorption. Ind. Eng. Chem. Res., 2022, 61(28): 10078,
CrossRef Google scholar
[[33]]
Wang T, Xu YB, Li YF, et al.. Sodium-mediated bimetallic Fe–Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite. ACS Catal., 2021, 11(6): 3553,
CrossRef Google scholar
[[34]]
Shi SQ, Hao SJ, Yang C, Chen YB, Chu HR, Dai SL. Enhanced microwave absorption properties of reduced graphene oxide/TiO2 nanowire composites synthesized via simultaneous carbonation and hydrogenation. J. Mater. Chem. C, 2022, 10(25): 9586,
CrossRef Google scholar
[[35]]
Shi YN, Ding XY, Pan KC, Gao ZH, Du J, Qiu J. A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands. J. Mater. Chem. A, 2022, 10(14): 7705,
CrossRef Google scholar
[[36]]
Y.L. Huang, W.J. Wang, X.W. Hou, et al., Salt-templated synthesis of CuO/Carbon nanosheets for efficient microwave absorption, Appl. Surf. Sci., 598(2022), art. No. 153779.
[[37]]
Wei TC, Zhu XZ, Xu JN, Kan CX, Shi DN. Porous molybdenum compound design for strong microwave absorption. Langmuir, 2023, 39(2): 890,
CrossRef Pubmed Google scholar
[[38]]
H. Wang, X.H. Zhang, Y.H. Tang, et al., Using silk-derived magnetic carbon nanocomposites as highly efficient Nanozymes and electromagnetic absorbing agents, Chin. Chem. Lett., 34(2023), No. 9, art. No. 108084.
[[39]]
Su XG, Han MJ, Liu YN, Wang J, Liang CB, Liu YQ. In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering. J. Colloid Interface Sci., 2022, 628: 984, Part B
CrossRef Pubmed Google scholar
[[40]]
Deng WB, Li TH, Li H, et al.. Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. J. Colloid Interface Sci., 2022, 618: 129,
CrossRef Pubmed Google scholar
[[41]]
J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253.
[[42]]
J. Dong, W.H. Xu, S.B. Liu, et al., Lignin-derived biochar to support CoFe2O4: Effective activation of peracetic acid for sulfamethoxazole degradation, Chem. Eng. J., 430(2022), art. No. 132868.
[[43]]
T.T. Zheng, Y. Zhang, Z.R. Jia, J.H. Zhu, G.L. Wu, and P.F. Yin, Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites, Chem. Eng. J., 457(2023), art. No. 140876.
[[44]]
Q.J. Wang, J.N. Wang, Y.Z. Zhao, et al., NiO/NiFe204@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: Experimental and theoretical study, Chem. Eng. J., 430(2022), art. No. 132814.
[[45]]
X.H. Liang, Z.M. Man, B. Quan, et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption, Nano Micro Lett., 12(2020), No. 1, art. No. 102.
[[46]]
Zhang S, Wang CJ, Gao TH, et al.. Optimizing electromagnetic interference shielding of ultrathin nanoheterostructure textiles through interfacial engineering. ACS Appl. Mater. Interfaces, 2023, 15(12): 15965,
CrossRef Pubmed Google scholar
[[47]]
Z. Su, S. Yi, W.Y. Zhang, et al., Magnetic-dielectric complementary Fe–Co–Ni alloy/carbon composites for high-attenuation C-band microwave absorption via carbothermal reduction of solid-solution precursor, Adv. Electron. Mater., 9(2023), No. 2, art. No. 2201159.
[[48]]
Y.C. Sun, T.T. Wang, C.H. Han, et al., Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: Selective adsorption and mechanism studies, Bioresour. Technol., 344(2022), art. No. 126186.
[[49]]
Y.P. Zhao, X.Q. Zuo, Y. Guo, et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption, Nano Micro Lett., 13(2021), No. 1, art. No. 144.
[[50]]
Wang YJ, Pang ZB, Xu H, et al.. High-performance electromagnetic wave absorption of NiCoFe/N-doped carbon composites with a Prussian blue analog (PBA) core at 2–18 GHz. J. Colloid Interface Sci., 2022, 620: 107,
CrossRef Pubmed Google scholar
[[51]]
Zhang XY, Jia ZR, Zhang F, et al.. MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci., 2022, 610: 610,
CrossRef Pubmed Google scholar
[[52]]
Fei Y, Wang XY, Yuan MS, Liang M, Chen Y, Zou HW. Co nanoparticles encapsulated in carbon nanotubes decorated carbon aerogels toward excellent microwave absorption. Ind. Eng. Chem. Res., 2022, 61(4): 1684,
CrossRef Google scholar
[[53]]
M. Zhang, S.N. Song, Y.M. Liu, Z.X. Hou, W.Y. Tang, and S.N. Li, Microstructural design of necklace-like Fe3O4/multi-wall carbon nanotube (MWCNT) composites with enhanced microwave absorption performance, Materials (Basel), 14(2021), No. 17, art. No. 4783.
[[54]]
J.R. Yao, L. Zhang, F. Yang, et al., Superhydrophobic Ti3C2Tx MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment, Chem. Eng. J., 446(2022), art. No. 136945.
[[55]]
Y.J. Zou, X.Z. Huang, B.H. Fan, J.L. Yue, and Y. Liu, Enhanced low-frequency microwave absorption performance of FeNi alloy coated carbon foam assisted by SiO2 layer, Appl. Surf. Sci., 600(2022), art. No. 154046.
[[56]]
X.Y. Deng, S. Gao, Y. Liu, Y.L. Bao, Y.F. Zhu, and Y.Q. Fu, Cellular-like sericin-derived carbon decorated reduced graphene oxide for tunable microwave absorption, Appl. Surf. Sci., 599(2022), art. No. 154063.
[[57]]
Y.L. Hou, Z.Z. Sheng, C. Fu, J. Kong, and X.T. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption, Nat. Commun., 13(2022), No. 1, art. No. 1227.
[[58]]
Fang JF, Lv HL, Zhao B, et al.. Selective assembly of magnetic nano-antenna for electromagnetic dissipation. J. Mater. Chem. A, 2022, 10(20): 10909,
CrossRef Google scholar
[[59]]
Liu Y, Jia ZR, Zhan QQ, Dong YH, Xu QM, Wu GL. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res., 2022, 15(6): 5590,
CrossRef Google scholar
[[60]]
Mao WJ, Wang XT, Hu XL, Lin ZH, Su ZM. Activation of peroxymonosulfate by co-metal–organic frameworks as catalysts for degradation of organic pollutants. Ind. Eng. Chem. Res., 2021, 60(36): 13223,
CrossRef Google scholar
[[61]]
Wang Y, Gao YN, Yue TN, Chen XD, Che RC, Wang M. Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption. J. Colloid Interface Sci., 2022, 607: 210,
CrossRef Pubmed Google scholar
[[62]]
J.N. Hu, C.Y. Liang, J.D. Li, et al., Flexible reduced graphene oxide@Fe3O4/silicone rubber composites for enhanced microwave absorption, Appl. Surf. Sci., 570(2021), art. No. 151270.
[[63]]
L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547.
[[64]]
X. Luo, H.F. Li, J.H. Sun, et al., EM waves absorption properties of nitrogenous porous carbon derived from PANI fiber clusters carbonization, Microporous Mesoporous Mater., 339(2022), art. No. 112000.
[[65]]
Wang YY, Zhu JL, Li N, et al.. Carbon aerogel microspheres with in situ mineralized TiO2 for efficient microwave absorption. Nano Res., 2022, 15(8): 7723,
CrossRef Google scholar
[[66]]
Liang J, Li CW, Cao X, et al.. Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers. Nano Res., 2022, 15(8): 6831,
CrossRef Google scholar
[[67]]
J. Liu, Y.S. Gu, L.L. Gao, et al., Hollow multi-shell SiC@C@PANI nanoparticles with broadband microwave absorption performance, Appl. Surf. Sci., 613(2023), art. No. 156098.
[[68]]
Li ZX, Yang W, Jiang B, et al.. Engineering of the core-shell boron Nitride@Nitrogen-doped carbon heterogeneous interface for efficient heat dissipation and electromagnetic wave absorption. ACS Appl. Mater. Interfaces, 2023, 15(5): 7578,
CrossRef Pubmed Google scholar
[[69]]
Zhai NX, Luo JH, Shu PC, Mei J, Li XP, Yan WX. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption. Nano Res., 2023, 16(7): 10698,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/