Thermodynamic model for deoxidation of liquid steel considering strong metal–oxygen interaction in the quasichemical model framework

Yong-Min Cho, Youn-Bae Kang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 988-1002. DOI: 10.1007/s12613-023-2766-7
Research Article

Thermodynamic model for deoxidation of liquid steel considering strong metal–oxygen interaction in the quasichemical model framework

Author information +
History +

Abstract

Herein, a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed. The model provides explicit forms of the activity coefficient of solutes in liquid steel, eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria. The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches, such as computational fluid dynamics. The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code. The proposed thermodynamic model was developed using a quasichemical approach with two key approximations: random mixing of metallic elements (Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors. Through these approximations, the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs. The model was successfully applied in the calculation of deoxidation equilibria of various elements (Al, B, C, Ca, Ce, Cr, La, Mg, Mn, Nb, Si, Ti, V, and Zr). The limitations of the model arising from these assumptions were also discussed.

Keywords

deoxidation equilibria / thermodynamics / quasichemical approach / computational fluid dynamics

Cite this article

Download citation ▾
Yong-Min Cho, Youn-Bae Kang. Thermodynamic model for deoxidation of liquid steel considering strong metal–oxygen interaction in the quasichemical model framework. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(5): 988‒1002 https://doi.org/10.1007/s12613-023-2766-7

References

[[1]]
Zhang LF, Thomas BG. State of the art in evaluation and control of steel cleanliness. ISIJ Int., 2003, 43(3): 271,
CrossRef Google scholar
[[2]]
Sahai Y, Emi T. . Tundish Technology for Clean Steel Production, 2007 Singapore World Scientific,
CrossRef Google scholar
[[3]]
Wasai K, Mukai K. Thermodynamic analysis of Fe–Al–O liquid alloy equilibrated with a-Al2O3(s) by an associated solution model. J. Jpn. Inst. Met. Mater., 1988, 52(11): 1088,
CrossRef Google scholar
[[4]]
Suito H, Inoue H, Inoue R. Aluminium–oxygen equilibrium between CaO–Al2O3 melts and liquid iron. ISIJ Int., 1991, 31(12): 1381,
CrossRef Google scholar
[[5]]
Kimura T, Suito H. Calcium deoxidation equilibrium in liquid iron. Metall. Mater. Trans. B, 1994, 25(1): 33,
CrossRef Google scholar
[[6]]
Itoh H, Hino M, Ban-Ya S. Assessment of Al deoxidation equilibrium in liquid iron. Tetsu-to-Hagané, 1997, 83(12): 773,
CrossRef Google scholar
[[7]]
Jung IH, Decterov SA, Pelton AD. A thermodynamic model for deoxidation equilibria in steel. Metall. Mater. Trans. B, 2004, 35(3): 493,
CrossRef Google scholar
[[8]]
Miki T, Hino M. Numerical analysis on Si deoxidation of molten Fe–Ni and Ni–Co alloys by quadratic formalism. ISIJ Int., 2004, 44(11): 1800,
CrossRef Google scholar
[[9]]
Cha WY, Nagasaka T, Miki T, Sasaki Y, Hino M. Equilibrium between titanium and oxygen in liquid Fe–Ti alloy coexisted with titanium oxides at 1873 K. ISIJ Int., 2006, 46(7): 996,
CrossRef Google scholar
[[10]]
Hayashi A, Uenishi T, Kandori H, Miki T, Hino M. Aluminum deoxidation equilibrium of molten Fe–Ni alloy coexisting with alumina or hercynite. ISIJ Int., 2008, 48(11): 1533,
CrossRef Google scholar
[[11]]
Paek MK, Pak JJ, Kang YB. Aluminum deoxidation equilibria in liquid iron: Part II. thermodynamic modeling. Metall. Mater. Trans. B, 2015, 46(5): 2224,
CrossRef Google scholar
[[12]]
Wagner C. . Thermodynamics of Alloys, 1951 Reading, MA Addison-Wesley Pub. Co. 51
[[13]]
Lupis CHP, Elliott J F. The relationship between the interaction coefficients epsilon and e. Trans. Metall. Soc. AIME, 1965, 233: 257
[[14]]
Lupis CHP. . Chemical Thermodynamics of Materials, 1993 Singapore Simon & Schuster (Asia) Pte Ltd.
[[15]]
Darken LS. Thermodynamics of binary metallic solutions. Trans. Metall. Soc. AlME, 1967, 239: 80
[[16]]
Schuhmann R. Solute interactions in multicomponent solutions. Metall. Trans. B, 1985, 16(4): 807,
CrossRef Google scholar
[[17]]
Pelton AD. The polynomial representation of thermodynamic properties in dilute solutions. Metall. Mater. Trans. B, 1997, 28(5): 869,
CrossRef Google scholar
[[18]]
Kang YB. Thermodynamic modeling of liquid steel. ISIJ Int., 2020, 60(12): 2717,
CrossRef Google scholar
[[19]]
Kang YB. The uniqueness of a correction to interaction parameter formalism in a thermodynamically consistent manner. Metall. Mater. Trans. B, 2020, 51(2): 795,
CrossRef Google scholar
[[20]]
Bale CW, Bélisle E, Chartrand P, et al.. FactSage thermochemical software and databases—Recent developments. Calphad, 2009, 33(2): 295,
CrossRef Google scholar
[[21]]
Bale CW, Bélisle E, Chartrand P, et al.. FactSage thermochemical software and databases, 2010–2016. Calphad, 2016, 54: 35,
CrossRef Google scholar
[[22]]
Andersson JO, Helander T, Höglund L, Shi PF, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad, 2002, 26(2): 273,
CrossRef Google scholar
[[23]]
Petersen S, Hack K. The thermochemistry library ChemApp and its applications. Int. J. Mater. Res., 2007, 98(10): 935,
CrossRef Google scholar
[[24]]
Y. Cho, H. Cho, S. Han, et al., A chemical reaction-fluid dynamics coupled model for Al reoxidation in tundish by open eye formation, [in] 8th International Congress on the Science and Technology of Steelmaking, Warredale, PA, 2022, p. 167.
[[25]]
Paek MK, Do KH, Kang YB, Jung IH, Pak JJ. Aluminum deoxidation equilibria in liquid iron: Part III—Experiments and thermodynamic modeling of the Fe–Mn–Al–O system. Metall. Mater. Trans. B, 2016, 47(5): 2837,
CrossRef Google scholar
[[26]]
Sigworth GK, Elliott JF. The thermodynamics of liquid dilute iron alloys. Met. Sci., 1974, 8(1): 298,
CrossRef Google scholar
[[27]]
Darken L S. Thermodynamics of ternary metallic solutions. Trans. Metall. Soc. AlME, 1967, 239: 90
[[28]]
Bale CW, Pelton AD. The unified interaction parameter formalism: Thermodynamic consistency and applications. Metall. Trans. A, 1990, 21(7): 1997,
CrossRef Google scholar
[[29]]
Bouchard D, Bale CW. Thermochemical properties of iron-rich liquid solutions containing oxygen and aluminum. J. Phase Equilib., 1995, 16(1): 16,
CrossRef Google scholar
[[30]]
Pelton AD, Degterov SA, Eriksson G, Robelin C, Dessureault Y. The modified quasichemical model I—Binary solutions. Metall. Mater. Trans. B, 2000, 31(4): 651,
CrossRef Google scholar
[[31]]
Pelton AD, Chartrand P, Eriksson G. The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall. Mater. Trans. A, 2001, 32(6): 1409,
CrossRef Google scholar
[[32]]
Lehmann J, Zhang L. The generalized central atom for metallurgical slags and high alloyed steel grades. Steel Res. Int., 2010, 81(10): 875,
CrossRef Google scholar
[[33]]
Guggenheim EA. Statistical thermodynamics of mixtures with non-zero energies of mixing. Proc. R. Soc. Lond. A, 1944, 183(993): 213,
CrossRef Google scholar
[[34]]
Kang YB, Pelton AD, Chartrand P, Fuerst CD. Critical evaluation and thermodynamic optimization of the Al–Ce, Al–Y, Al–Sc and Mg–Sc binary systems. Calphad, 2008, 32(2): 413,
CrossRef Google scholar
[[35]]
Kang YB, Pelton AD. Modeling short-range ordering in liquids: The Mg–Al–Sn system. Calphad, 2010, 34(2): 180,
CrossRef Google scholar
[[36]]
Kang YB, Pelton AD. The shape of liquid miscibility gaps and short-range-order. J. Chem. Thermodyn., 2013, 60: 19,
CrossRef Google scholar
[[37]]
Kang YB, Jung IH, Decterov SA, Pelton AD, Lee HG. Critical thermodynamic evaluation and optimization of the CaO–MnO–SiO2 and CaO–MnO–Al2O3 systems. ISIJ Int., 2004, 44(6): 965,
CrossRef Google scholar
[[38]]
Kang YB, Jung IH, Lee HG. Critical thermodynamic evaluation and optimization of the MnO–“TiO2”–“Ti2O3” system. Calphad, 2006, 30(3): 235,
CrossRef Google scholar
[[39]]
Kang YB, Jung IH, Lee HG. Critical thermodynamic evaluation and optimization of the MnO–SiO2–“TiO2”–“Ti2O3” system. Calphad, 2006, 30(3): 226,
CrossRef Google scholar
[[40]]
Kang YB, Lee JH. Reassessment of oxide stability diagram in the Fe–Al–Ti–O system. ISIJ Int., 2017, 57(9): 1665,
CrossRef Google scholar
[[41]]
Kang YB, Pelton AD. Thermodynamic model and database for sulfides dissolved in molten oxide slags. Metall. Mater. Trans. B, 2009, 40(6): 979,
CrossRef Google scholar
[[42]]
Piao R, Woo DH, Lee HG, Kang YB. A thermodynamic model and database for oxysulfide inclusions containing Ca–Mn–Si–Al–O–S and its application to prediction of inclusions evolution in steels. AIST Trans., 2014, 11(5): 218
[[43]]
Kim DG, Van Ende MA, van Hoek C, Liebske C, van der Laan S, Jung IH. A critical evaluation and thermodynamic optimization of the CaO–CaF2 system. Metall. Mater. Trans. B, 2012, 43(6): 1315,
CrossRef Google scholar
[[44]]
Alcock CB, Richardson FD. Dilute solutions in alloys. Acta Metall., 1960, 8(12): 882,
CrossRef Google scholar
[[45]]
Barin I, Knacke O, Kubaschewski O. . Thermochemical Properties of Inorganic Substances, 1977 Berlin, Heidelberg Springer Berlin Heidelberg,
CrossRef Google scholar
[[46]]
Dinsdale AT. SGTE data for pure elements. Calphad, 1991, 15(4): 317,
CrossRef Google scholar
[[47]]
Fruehan RJ. Activities in liquid Fe–Al–O and Fe–Ti–O alloys. Metall. Trans., 1970, 1(12): 3403,
CrossRef Google scholar
[[48]]
Dimitrov S, Weyl A, Janke D. Control of the aluminium-oxygen reaction in pure iron melts. Steel Res., 1995, 66(1): 3,
CrossRef Google scholar
[[49]]
Janke D, Fischer WA. Desoxidationsgleichgewichte von titan, aluminium und zirconium in eisenschmelzen Bei 1600°C. Archiv für das Eisenhüttenwesen, 1976, 47(4): 195,
CrossRef Google scholar
[[50]]
Rohde LE, Choudhury A, Wahlster M. Neuere untersuchungen über das aluminium-sauerstoff-gleichgewicht in eisenschmelzen. Archiv für das Eisenhüttenwesen, 1971, 42(3): 165,
CrossRef Google scholar
[[51]]
V. Shevtsov, Thermodynamics of oxygen solutions in the Fe–Al system, Russ. Metall., (1981), No. 1, p. 52.
[[52]]
Seo JD, Kim SH, Lee KR. Thermodynamic assessment of the Al deoxidation reaction in liquid iron. Steel Res., 1998, 69(2): 49,
CrossRef Google scholar
[[53]]
Swisher J. Note on the aluminum-oxygen interaction in liquid iron. AIME Met. Soc. Trans., 1967, 239(1): 123
[[54]]
Kang Y, Thunman M, Du SC, Morohoshi T, Mizukami K, Morita K. Aluminum deoxidation equilibrium of molten iron–aluminum alloy with wide aluminum composition range at 1 873 K. ISIJ Int., 2009, 49(10): 1483,
CrossRef Google scholar
[[55]]
Japan Society for the Promotion of Science. . Steelmaking Data Sourcebook, 1988 New York Gordon & Breach Science
[[56]]
Inoue R, Suito H. Determination of oxygen in iron-aluminum alloy by inert gas fusion-infrared absorptiometry. Mater. Trans. JIM, 1991, 32(12): 1164,
CrossRef Google scholar
[[57]]
LECO Corporation. . ON836 Oxygen/Nitrogen Analyzer Instruction Manual, 2013 MI St. Joseph
[[58]]
Fruehan R, Martonik L, Turkdogan E. Development of a galvanic cell for the determination of oxygen in liquid steel. Trans. Met. Soc. AIME, 1969, 245(7): 1501
[[59]]
McLean A, Bell H. Experimental study of the reaction Al2O3 + 3H2 = 3H2O + 2Al. J. Iron Steel Inst., 1965, 203: 123
[[60]]
Gokcen NA, Chipman J. Aluminum-oxygen equilibrium in liquid iron. JOM, 1953, 5(2): 173,
CrossRef Google scholar
[[61]]
Fruehan RJ. The thermodynamic properties of liquid Fe–Si alloys. Metall. Trans., 1970, 1(4): 865,
CrossRef Google scholar
[[62]]
Gokcen NA, Chipman J. Silicon-oxygen equilibrium in liquid iron. JOM, 1952, 4(2): 171,
CrossRef Google scholar
[[63]]
Hilty DC, Crafts W. Solubility of oxygen in liquid iron containing silicon and manganese. JOM, 1950, 2(2): 425,
CrossRef Google scholar
[[64]]
Shibaev SS, Krasovskii PV, Grigorovitch KV. Solubility of oxygen in iron–silicon melts in equilibrium with silica at 1873 K. ISIJ Int., 2005, 45(9): 1243,
CrossRef Google scholar
[[65]]
S. Pindar and M.M. Pande, Assessment of Si–O equilibria and nonmetallic inclusion characteristics in high silicon steels, Steel Res. Int., 94(2023), art. No.2300115.
[[66]]
Kojima Y, Inouye M, Ohi JI. Titanoxyd im gleichgewicht mit eisen-titan-legierungen Bei 1600°C. Archiv für das Eisenhüttenwesen, 1969, 40(9): 667,
CrossRef Google scholar
[[67]]
Chino H, Nakamura Y, Tsunetomi E, Segawa K. The deoxidation with titanium in liquid iron. Tetsu-to-Hagané, 1966, 52(6): 959,
CrossRef Google scholar
[[68]]
Smellie AM, Bell HB. Titanium deoxidation reactions in liquid iron. Can. Metall. Q., 1972, 11(2): 351,
CrossRef Google scholar
[[69]]
Fischer WA, Janke D. Die aktivität des sauerstoffs in reinen und mangan-, titan-oder borhaltigen eisenschmelzen. Archiv für das Eisenhüttenwesen, 1971, 42(10): 691,
CrossRef Google scholar
[[70]]
Dimitrov S, Weyl A, Janke D. Control of the manganese–oxygen reaction in pure iron melts. Steel Res., 1995, 66(3): 87,
CrossRef Google scholar
[[71]]
Takahashi K, Hino M. Equilibrium between dissolved Mn and O in molten high-manganese steel. High Temp. Mater. Process., 2000, 19(1): 1,
CrossRef Google scholar
[[72]]
Janke D, Fischer W. Equilibria of chromium and manganese with oxygen in iron melts at 1600°C. Archiv für das Eisenhüttenwesen, 1976, 47(3): 147,
CrossRef Google scholar
[[73]]
Chipman J, Gero JB, Winkler TB. The manganese equilibrium under simple oxide slags. JOM, 1950, 2(2): 341,
CrossRef Google scholar
[[74]]
Heinz M, Koch K, Janke D. Oxygen activities in Cr-containing Fe and Ni-based melts. Steel Res., 1989, 60(6): 246,
CrossRef Google scholar
[[75]]
Fruehan R. Activities in liquid Fe–Cr–O system. Met. Soc. AIME-Trans, 1969, 245(6): 1215
[[76]]
Pargeter JK. The effect of additions of manganese, vanadium and chromium on the activity of oxygen in molten iron. Can. Metall. Q., 1967, 6(1): 21,
CrossRef Google scholar
[[77]]
Chen H, Chipman J. The chromium–oxygen equilibirum in liquid iron. Metall. Trans. ASM, 1947, 38: 70
[[78]]
Turkdogan E. Chromium-oxygen equilibrium in liquid iron. J. Iron Steel Inst., 1954, 178(3): 278
[[79]]
Hilty DC, Forgeng WD, Folkman RL. Oxygen solubility and oxide phases in the Fe–Cr–O system. JOM, 1955, 7(2): 253,
CrossRef Google scholar
[[80]]
Dimitrov S, Wenz H, Koch K, Janke D. Control of the chromium–oxygen reaction in pure iron melts. Steel Res., 1995, 66(2): 39,
CrossRef Google scholar
[[81]]
Matoba S. Equilibrium of carbon and oxygen in molten iron. Tetsu-to-Hagané, 1934, 20(12): 837,
CrossRef Google scholar
[[82]]
Banya S, Matoba S. Activity of carbon and oxygen in liquid iron. Tetsu-to-Hagané Overseas, 1963, 3(1): 21,
CrossRef Google scholar
[[83]]
Schenck H, Steinmetz E, Gloz M. Der sauerstoffgehalt in kohlenstoffreichem und kohlenstoffgesättigtem flüssigem eisen Bei 1600°C. Archiv für das Eisenhüttenwesen, 1968, 39(1): 69,
CrossRef Google scholar
[[84]]
Fischer WA, Janke D. Elektrochemische aufzeichnung des entkohlungsablaufs von eisenschmelzen. Archiv für das Eisenhüttenwesen, 1971, 42(4): 249,
CrossRef Google scholar
[[85]]
Schenck H, Hinze H. Equilibriums of the iron-carbon-oxygen system in the temperature and concentration range of molten steel and the effect of phosphorus, manganese, and sulfur. Archiv für das Eisenhüttenwesen, 1966, 37(1): 545,
CrossRef Google scholar
[[86]]
Fuwa T, Chipman J. Activity of carbon in liquid-iron alloys. Trans. Metall. Soc. AIME, 1959, 215: 708
[[87]]
Fuwa T, Chipman J. The carbon–oxygen equilibria in liquid iron. Trans. AIME, 1960, 218: 887
[[88]]
Gustafsson S, Mellberg PO. On the free energy interaction between some strong deoxidizers, especially calcium and oxygen in liquid iron. Scand. J. Metall., 1980, 9: 111
[[89]]
Hillert M, Selleby M. Solubility of CaO and Al2O3 in liquid Fe. Scand. J. Metall., 1990, 19: 23
[[90]]
Huang WM. Oxygen solubility in Fe–Zr–O liquid. Calphad, 2004, 28(2): 153,
CrossRef Google scholar
[[91]]
Hong HM, Kang YB. Simultaneous analysis of soluble and insoluble oxygen contents in steel specimens using inert gas fusion infrared absorptiometry. ISIJ Int., 2021, 61(9): 2464,
CrossRef Google scholar
[[92]]
Kang YB, Cho YM, Hong HM. Thermodynamic basis of isothermal carbothermic reduction of oxide in liquid steel for simultaneous analysis of soluble/insoluble oxygen contents in the steel specimens. Metall. Mater. Trans. B, 2022, 53(4): 1980,
CrossRef Google scholar
[[93]]
Cho YM, Lee DJ, Cho HJ, Kim WY, Han SW, Kang YB. Simultaneous analysis of soluble and insoluble oxygen contents in Al-killed steels of various C contents and supersaturation phenomena in the steel. ISIJ Int., 2022, 62(8): 1705,
CrossRef Google scholar
[[94]]
Seo J, Kim S. Thermodynamic assessment of Al, Mg, and Ca deoxidation reaction for the control of alumina inclusion in liquid steel. Bull. Korean Inst. Metall. Mater. (Korea), 1999, 12(3): 402
[[95]]
Ototani T, Kataura Y, Degawa T. Deoxidation of liquid iron and its alloys by calcium contained in lime crucible. Trans. Iron Steel Inst. Jpn., 1976, 16(5): 275,
CrossRef Google scholar
[[96]]
Miyashita Y, Nishikawa K. The deoxidation of liquid iron with calcium. Tetsu-to-Hagané, 1971, 57(13): 1969,
CrossRef Google scholar
[[97]]
Han QY, Zhang XD, Chen D, Wang PF. The calcium-phosphorus and the simultaneous calcium–oxygen and calcium–sulfur equilibria in liquid iron. Metall. Trans. B, 1988, 19(4): 617,
CrossRef Google scholar
[[98]]
Ozawa M. . The Japan Society for the Promotion of Science, 19th Committee Paper No. 9837, 1975 Toyko Iron Steel Institute of Japan 6
[[99]]
Kang YB. Oxide solubility minimum in liquid Fe–M–O alloy. Metall. Mater. Trans. B, 2019, 50(6): 2942,
CrossRef Google scholar
[[100]]
Fruehan RJ. The effect of zirconium, cerium, and lanthanum on the solubility of oxygen in liquid iron. Metall. Trans., 1974, 5(2): 345,
CrossRef Google scholar
[[101]]
Fischer WA, Bertram H. Die desoxydation, entschwefelung und entstickung sauerstoff-, schwefel- oder stickstoffhaltiger eisenschmelzen durch die seltenen erdmetalle cer und lanthan. Archiv für das Eisenhüttenwesen, 1973, 44(2): 87,
CrossRef Google scholar
[[102]]
Janke D, Fischer WA. Deoxidation equilibria of cerium, lanthanum, and hafnium in liquid iron. Archiv für das Eisenhüttenwesen, 1978, 49(9): 425,
CrossRef Google scholar
[[103]]
Park JH, Kim DJ, Min DJ. Characterization of non-metallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall. Mater. Trans. A, 2012, 43(7): 2316,
CrossRef Google scholar
[[104]]
Ogasawara Y, Miki T, Nagasaka T. Equilibrium of Al deoxidation in liquid Fe–Mn alloy. CAMP-ISIJ, 2012, 25: 240
[[105]]
Nishigaki R, Matsuura H. Al deoxidation equilibrium of Fe–10–30 mass%Mn melt at 1873 K. Tetsu-to-Hagané, 2019, 105(3): 369,
CrossRef Google scholar
[[106]]
Nishigaki R, Matsuura H. Deoxidation equilibria of Fe–Mn–Al melt with Al2O3 or MnAl2O4 at 1873 and 1773 K. ISIJ Int., 2020, 60(12): 2787,
CrossRef Google scholar
[[107]]
Kang YB, Jung SH. Oxide stability diagram of liquid steels–Construction and utilization. ISIJ Int., 2018, 58(8): 1371,
CrossRef Google scholar
[[108]]
ANSYS, Inc., Ansys Fluent 12.0, Theory Guide, 2009, p. 67.

Accesses

Citations

Detail

Sections
Recommended

/