Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method

Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, Qian Li

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (1) : 129-137. DOI: 10.1007/s12613-023-2759-6
Research Article

Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method

Author information +
History +

Abstract

Mg−Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition. The accurate prediction of thermal conductivity is a prerequisite for designing Mg−Al alloys with high thermal conductivity. Thus, databases for predicting temperature- and composition-dependent thermal conductivities must be established. In this study, Mg−Al−La alloys with different contents of Al2La, Al3La, and Al11La3 phases and solid solubility of Al in the α-Mg phase were designed. The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated. Experimental results revealed a second phase transformation from Al2La to Al3La and further to Al11La3 with the increasing Al content at a constant La amount. The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La > Al3La > Al11La3. Compared with the second phase, an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity. On the basis of the experimental data, a database of the reciprocal thermal diffusivity of the Mg−Al−La system was established by calculation of the phase diagram (CALPHAD) method. With a standard error of ±1.2 W/(m·K), the predicted results were in good agreement with the experimental data. The established database can be used to design Mg−Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.

Keywords

magnesium alloy / thermal conductivity / thermodynamic calculations / materials computation

Cite this article

Download citation ▾
Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, Qian Li. Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(1): 129‒137 https://doi.org/10.1007/s12613-023-2759-6

References

[[1]]
Liu B, Yang J, Zhang XY, Yang Q, Zhang JS, Li XQ. Development and application of magnesium alloy parts for automotive OEMs: A review. J. Magnes. Alloys, 2023, 11(1): 15,
CrossRef Google scholar
[[2]]
Song JF, She J, Chen DL, Pan FS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys, 2020, 8(1): 1,
CrossRef Google scholar
[[3]]
Wang PP, Jiang HT, Wang YJ, et al.. Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg-3Al-1Zn alloy. Int. J. Miner. Metall. Mater., 2022, 29(8): 1559,
CrossRef Google scholar
[[4]]
Yang K, Pan HC, Du S, et al.. Low-cost and high-strength Mg-Al-Ca-Zn-Mn wrought alloy with balanced ductility. Int. J. Miner. Metall. Mater., 2022, 29(7): 1396,
CrossRef Google scholar
[[5]]
Li SB, Yang XY, Hou JT, Du WB. A review on thermal conductivity of magnesium and its alloys. J. Magnes. Alloys, 2020, 8(1): 78,
CrossRef Google scholar
[[6]]
Luo Q, Guo YL, Liu B, et al.. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review. J. Mater. Sci. Technol., 2020, 44: 171,
CrossRef Google scholar
[[7]]
Liao HB, Mo LL, Zhou X, Yuan ZZ, Du J. Revealing the nucleation event of Mg-Al alloy induced by Fe impurity. Int. J. Miner. Metall. Mater., 2022, 29(7): 1317,
CrossRef Google scholar
[[8]]
Rong J, Xiao WL, Zhao XQ, et al.. High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components. Int. J. Miner. Metall. Mater., 2022, 29(1): 88,
CrossRef Google scholar
[[9]]
H.C. Chen, T.C. Xie, Q. Liu, et al., Mechanism and prediction of aging time related thermal conductivity evolution of Mg-Zn alloys, J. Alloys Compd., 930(2023), art. No. 167392.
[[10]]
Bazhenov VE, Koltygin AV, Sung MC, et al.. Development of Mg-Zn-Y-Zr casting magnesium alloy with high thermal conductivity. J. Magnes. Alloys, 2021, 9(5): 1567,
CrossRef Google scholar
[[11]]
H.G. Zhong, Z.H. Lin, Q.Y. Han, et al., Hot tearing behavior of AZ91D magnesium alloy, J. Magnes. Alloys, (2023) DOI: https://doi.org/10.1016/j.jma.2023.02.010
[[12]]
Yuan GY, You GQ, Bai SL, Guo W. Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes. J. Alloys Compd., 2018, 766: 410,
CrossRef Google scholar
[[13]]
Y.X. Zhang, H.H. Kang, H. Nagaumi, and X.Y. Yang, Tracing the microstructures, mechanical properties and thermal conductivity of low-temperature extruded MgMn alloys with various cerium additions, Mater. Charact., 196(2023), art. No. 112658.
[[14]]
Ma HB, Wang JH, Wang HY, et al.. Influence of nano-diamond content on the microstructure, mechanical and thermal properties of the ZK60 composites. J. Magnes. Alloys, 2022, 10(2): 440,
CrossRef Google scholar
[[15]]
Zhong LP, Peng J, Sun S, Wang YJ, Lu Y, Pan FS. Microstructure and thermal conductivity of As-cast and As-solutionized Mg-rare earth binary alloys. J. Mater. Sci. Technol., 2017, 33(11): 1240,
CrossRef Google scholar
[[16]]
Yao FJ, You GQ, Zeng S, Lu DS, Ming Y. Reaction-tunable diffusion bonding to multilayered Cu mesh/ZK61 Mg foil composites with thermal conductivity and lightweight synergy. J. Mater. Sci. Technol., 2023, 139: 10,
CrossRef Google scholar
[[17]]
Xie TC, Shi H, Wang HB, Luo Q, Li Q, Chou KC. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system. J. Mater. Sci. Technol., 2022, 97: 147,
CrossRef Google scholar
[[18]]
F.J. Yao, D.J. Li, Z.X. Li, B. Hu, Y. Huang, and X.Q. Zeng, Ultra-high thermal conductivity of Mg-4Sm-2Al alloy by MW-CNTs addition, Mater. Lett., 341(2023), art. No. 134224.
[[19]]
Su CY, Li DJ, Luo AA, Ying T, Zeng XQ. Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study. J. Alloys Compd., 2018, 747: 431,
CrossRef Google scholar
[[20]]
X.X. Dong, L.Y. Feng, S.H. Wang, et al., A quantitative strategy for achieving the high thermal conductivity of die-cast Mg-Al-based alloys, Materialia, 22(2022), art. No. 101426.
[[21]]
Liu YF, Jia XJ, Qiao XG, Xu SW, Zheng MY. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys. J. Alloys Compd., 2019, 806: 71,
CrossRef Google scholar
[[22]]
Qi MF, Wei LY, Xu YZ, et al.. Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg-2Zn-0.1Mn-0.3Ca-xY biological magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(9): 1746,
CrossRef Google scholar
[[23]]
Rodchom M, Wimuktiwan P, Soongprasit K, Atong D, Vichaphund S. Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash. Int. J. Miner. Metall. Mater., 2022, 29(8): 1635,
CrossRef Google scholar
[[24]]
Wu GH, Wang CL, Sun M, Ding WJ. Recent developments and applications on high-performance cast magnesium rare-earth alloys. J. Magnes. Alloys, 2020, 9(1): 1,
CrossRef Google scholar
[[25]]
Zeng XQ, Wang J, Ying T, Ding WJ. Recent progress on thermal conductivity of magnesium and its alloys. Acta Metall. Sin., 2022, 58(4): 400
[[26]]
Zhao XF, Li ZX, Zhou WK, Li DJ, Qin M, Zeng XQ. Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg-La-Al-Mn alloys. Mater. Res., 2021, 36(15): 3145,
CrossRef Google scholar
[[27]]
Zhu SM, Gibson MA, Nie JF, Easton MA, Abbott TB. Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy. Scripta Mater., 2008, 58(6): 477,
CrossRef Google scholar
[[28]]
Kim JM, Lee SJ. Microstructure and Castability of Mg-Al-La alloys for high conductivity applications. Int. J. Metalcast., 2015, 9(3): 15,
CrossRef Google scholar
[[29]]
Wong C, Nogita K, Styles MJ, et al.. Solidification path and microstructure evolution of Mg-3Al-14La alloy: Implications for the Mg-rich corner of the Mg-Al-La phase diagram. J. Alloys Compd., 2019, 784(5): 527,
CrossRef Google scholar
[[30]]
W.K. Zhou, Z.X. Li, D.J. Li, et al., Comparative study of corrosion behaviors of die cast LA42 and AZ91 alloys, J. Magnes. Alloys, (2022). DOI: https://doi.org/10.1016/j.jma.2022.10.022
[[31]]
Guo EY, Shuai SS, Kazantsev D, et al.. The influence of nanoparticles on dendritic grain growth in Mg alloys. Acta Mater., 2018, 152: 127,
CrossRef Google scholar
[[32]]
Wong C, Styles MJ, Zhu SM, et al.. (Al,Mg)3La: A new phase in the Mg-Al-La system. Acta Cryst., 2018, 74: 370
[[33]]
Zhang JH, Zhang DP, Tian Z, et al.. Microstructures, tensile properties and corrosion behavior of die-cast Mg-4Al-based alloys containing La and/or Ce. Mater. Sci. Eng. A, 2008, 489(1–2): 113,
CrossRef Google scholar
[[34]]
Feng LY, Dong XX, Xia MX, et al.. Development of high thermal conductivity, enhanced strength and cost-effective diecast Mg alloy compared with AE44 alloy. J. Mater. Res. Technol., 2023, 22: 2955,
CrossRef Google scholar
[[35]]
S.M. Zhu, C. Wong, M.J. Styles, T.B. Abbott, J.F. Nie, and M.A. Easton, Revisiting the intermetallic phases in high-pressure die-cast Mg-4Al-4Ce and Mg-4Al-4La alloys, Mater. Charact., 156(2019), art. No. 109839.
[[36]]
X. Zhang, L. Li, Z. Wang, et al., Ultrafine-grained Al-La-Mg-Mn alloy with superior thermal stability and strength-ductility synergy, Mater. Sci. Eng. A, 873(2023), art. No. 145035.
[[37]]
Zhang XK, Li LJ, Wang Z, Peng HL, Gao JX, Peng ZW. A novel high-strength Al-La-Mg-Mn alloy for selective laser melting. J. Mater. Sci. Technol., 2023, 137(20): 205
[[38]]
Liu C, Luo Q, Gu QF, Li Q, Chou KC. Thermodynamic assessment of Mg-Ni-Y system focusing on long-period stacking ordered phases in the Mg-rich corner. J. Magnes. Alloys, 2022, 10(11): 3250,
CrossRef Google scholar
[[39]]
Chen HC, Xu W, Luo Q, et al.. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X = Ni, Mn, Si, Cr) systems with dilatational coefficient model. J. Mater. Sci. Technol., 2022, 112: 291,
CrossRef Google scholar
[[40]]
Zhang Q, Chen HC, Luo Q, Yuan Y, Liu HQ, Li Q. The design of Ti-Cu-Ni-Zr titanium alloy solder: Thermodynamic calculation and experimental validation. J. Mater. Sci., 2022, 57(12): 6819,
CrossRef Google scholar
[[41]]
Zhang S, Li QQ, Chen HC, Luo Q, Li Q. Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability. Int. J. Miner. Metall. Mater., 2022, 29(8): 1543,
CrossRef Google scholar
[[42]]
Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, and Q. Li, Experimental study and thermodynamic evaluation of Mg-La-Zn system, J. Alloys Compd., 814(2020), art. No. 152297.
[[43]]
Luo Q, Zhai C, Sun DK, Chen W, Li Q. Interpolation and extrapolation with the CALPHAD method. J. Mater. Sci. Technol., 2019, 35(9): 2115,
CrossRef Google scholar
[[44]]
Huang L, Liu SH, Du Y, Zhang C. Thermal conductivity of the Mg-Al-Zn alloys: Experimental measurement and CALPHAD modeling. Calphad, 2018, 62: 99,
CrossRef Google scholar
[[45]]
Zhai C, Luo Q, Cai Q, Guan RG, Li Q. Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg-Nd system under a static magnetic field. J. Alloys Compd., 2019, 773: 202,
CrossRef Google scholar
[[46]]
Wang Y, Kang HJ, Guo Y, Chen HT, Hu ML, Ji ZS. Design and preparation of aluminum alloy with high thermal conductivity based on CALPHAD and first-principles calculation. China Foundry, 2022, 19(3): 225,
CrossRef Google scholar
[[47]]
Zhang C, Du Y, Liu SH, Liu YL, Sundman B. Thermal conductivity of Al-Cu-Mg-Si alloys: Experimental measurement and CALPHAD modeling. Thermochim. Acta, 2016, 635: 8,
CrossRef Google scholar
[[48]]
Hosseinifar M, Malakhov DV. On the fabricability of a composite material containing the FCC matrix with embedded ductile B2 intermetallics. J. Alloys Compd., 2010, 505(2): 459,
CrossRef Google scholar
[[49]]
J.M. Joubert, B. Kaplan, and M. Selleby, The specific heat of Al-based compounds, evaluation of the Neumann-Kopp rule and proposal for a modified Neumann-Kopp rule, Calphad, 81(2023), art. No. 102562.
[[50]]
Lee DK, In J, Lee S. Standard deviation and standard error of the mean. Korean J. Anesthesiol., 2015, 68(3): 220,
CrossRef Google scholar
[[51]]
Su CY, Li DJ, Luo AA, Shi RH, Zeng XQ. Quantitative study of microstructure-dependent thermal conductivity in Mg-4Ce-xAl-0.5Mn alloys. Metall. Mater. Trans. A, 2019, 50(4): 1970,
CrossRef Google scholar
[[52]]
Ho CY, Ackerman MW, Wu KY, et al.. Electrical resistivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data, 1983, 12(2): 183,
CrossRef Google scholar
[[53]]
H. Shi, Q. Li, J.Y. Zhang, Q. Luo, and K.C. Chou, Re-assessment of the Mg-Zn-Ce system focusing on the phase equilibria in Mg-rich corner, Calphad, 68(2020), art. No. 101742.

Accesses

Citations

Detail

Sections
Recommended

/