Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method

Hongxia Li , Wenjun Xu , Yufei Zhang , Shenglan Yang , Lijun Zhang , Bin Liu , Qun Luo , Qian Li

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (1) : 129 -137.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (1) : 129 -137. DOI: 10.1007/s12613-023-2759-6
Research Article

Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method

Author information +
History +
PDF

Abstract

Mg−Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition. The accurate prediction of thermal conductivity is a prerequisite for designing Mg−Al alloys with high thermal conductivity. Thus, databases for predicting temperature- and composition-dependent thermal conductivities must be established. In this study, Mg−Al−La alloys with different contents of Al2La, Al3La, and Al11La3 phases and solid solubility of Al in the α-Mg phase were designed. The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated. Experimental results revealed a second phase transformation from Al2La to Al3La and further to Al11La3 with the increasing Al content at a constant La amount. The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La > Al3La > Al11La3. Compared with the second phase, an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity. On the basis of the experimental data, a database of the reciprocal thermal diffusivity of the Mg−Al−La system was established by calculation of the phase diagram (CALPHAD) method. With a standard error of ±1.2 W/(m·K), the predicted results were in good agreement with the experimental data. The established database can be used to design Mg−Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.

Keywords

magnesium alloy / thermal conductivity / thermodynamic calculations / materials computation

Cite this article

Download citation ▾
Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, Qian Li. Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(1): 129-137 DOI:10.1007/s12613-023-2759-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuB, YangJ, ZhangXY, YangQ, ZhangJS, LiXQ. Development and application of magnesium alloy parts for automotive OEMs: A review. J. Magnes. Alloys, 2023, 11(1): 15

[2]

SongJF, SheJ, ChenDL, PanFS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys, 2020, 8(1): 1

[3]

WangPP, JiangHT, WangYJ, et al.. Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg-3Al-1Zn alloy. Int. J. Miner. Metall. Mater., 2022, 29(8): 1559

[4]

YangK, PanHC, DuS, et al.. Low-cost and high-strength Mg-Al-Ca-Zn-Mn wrought alloy with balanced ductility. Int. J. Miner. Metall. Mater., 2022, 29(7): 1396

[5]

LiSB, YangXY, HouJT, DuWB. A review on thermal conductivity of magnesium and its alloys. J. Magnes. Alloys, 2020, 8(1): 78

[6]

LuoQ, GuoYL, LiuB, et al.. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review. J. Mater. Sci. Technol., 2020, 44: 171

[7]

LiaoHB, MoLL, ZhouX, YuanZZ, DuJ. Revealing the nucleation event of Mg-Al alloy induced by Fe impurity. Int. J. Miner. Metall. Mater., 2022, 29(7): 1317

[8]

RongJ, XiaoWL, ZhaoXQ, et al.. High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components. Int. J. Miner. Metall. Mater., 2022, 29(1): 88

[9]

H.C. Chen, T.C. Xie, Q. Liu, et al., Mechanism and prediction of aging time related thermal conductivity evolution of Mg-Zn alloys, J. Alloys Compd., 930(2023), art. No. 167392.

[10]

BazhenovVE, KoltyginAV, SungMC, et al.. Development of Mg-Zn-Y-Zr casting magnesium alloy with high thermal conductivity. J. Magnes. Alloys, 2021, 9(5): 1567

[11]

H.G. Zhong, Z.H. Lin, Q.Y. Han, et al., Hot tearing behavior of AZ91D magnesium alloy, J. Magnes. Alloys, (2023) DOI: https://doi.org/10.1016/j.jma.2023.02.010

[12]

YuanGY, YouGQ, BaiSL, GuoW. Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes. J. Alloys Compd., 2018, 766: 410

[13]

Y.X. Zhang, H.H. Kang, H. Nagaumi, and X.Y. Yang, Tracing the microstructures, mechanical properties and thermal conductivity of low-temperature extruded MgMn alloys with various cerium additions, Mater. Charact., 196(2023), art. No. 112658.

[14]

MaHB, WangJH, WangHY, et al.. Influence of nano-diamond content on the microstructure, mechanical and thermal properties of the ZK60 composites. J. Magnes. Alloys, 2022, 10(2): 440

[15]

ZhongLP, PengJ, SunS, WangYJ, LuY, PanFS. Microstructure and thermal conductivity of As-cast and As-solutionized Mg-rare earth binary alloys. J. Mater. Sci. Technol., 2017, 33(11): 1240

[16]

YaoFJ, YouGQ, ZengS, LuDS, MingY. Reaction-tunable diffusion bonding to multilayered Cu mesh/ZK61 Mg foil composites with thermal conductivity and lightweight synergy. J. Mater. Sci. Technol., 2023, 139: 10

[17]

XieTC, ShiH, WangHB, LuoQ, LiQ, ChouKC. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system. J. Mater. Sci. Technol., 2022, 97: 147

[18]

F.J. Yao, D.J. Li, Z.X. Li, B. Hu, Y. Huang, and X.Q. Zeng, Ultra-high thermal conductivity of Mg-4Sm-2Al alloy by MW-CNTs addition, Mater. Lett., 341(2023), art. No. 134224.

[19]

SuCY, LiDJ, LuoAA, YingT, ZengXQ. Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study. J. Alloys Compd., 2018, 747: 431

[20]

X.X. Dong, L.Y. Feng, S.H. Wang, et al., A quantitative strategy for achieving the high thermal conductivity of die-cast Mg-Al-based alloys, Materialia, 22(2022), art. No. 101426.

[21]

LiuYF, JiaXJ, QiaoXG, XuSW, ZhengMY. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys. J. Alloys Compd., 2019, 806: 71

[22]

QiMF, WeiLY, XuYZ, et al.. Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg-2Zn-0.1Mn-0.3Ca-xY biological magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(9): 1746

[23]

RodchomM, WimuktiwanP, SoongprasitK, AtongD, VichaphundS. Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash. Int. J. Miner. Metall. Mater., 2022, 29(8): 1635

[24]

WuGH, WangCL, SunM, DingWJ. Recent developments and applications on high-performance cast magnesium rare-earth alloys. J. Magnes. Alloys, 2020, 9(1): 1

[25]

ZengXQ, WangJ, YingT, DingWJ. Recent progress on thermal conductivity of magnesium and its alloys. Acta Metall. Sin., 2022, 58(4): 400

[26]

ZhaoXF, LiZX, ZhouWK, LiDJ, QinM, ZengXQ. Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg-La-Al-Mn alloys. Mater. Res., 2021, 36(15): 3145

[27]

ZhuSM, GibsonMA, NieJF, EastonMA, AbbottTB. Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy. Scripta Mater., 2008, 58(6): 477

[28]

KimJM, LeeSJ. Microstructure and Castability of Mg-Al-La alloys for high conductivity applications. Int. J. Metalcast., 2015, 9(3): 15

[29]

WongC, NogitaK, StylesMJ, et al.. Solidification path and microstructure evolution of Mg-3Al-14La alloy: Implications for the Mg-rich corner of the Mg-Al-La phase diagram. J. Alloys Compd., 2019, 784(5): 527

[30]

W.K. Zhou, Z.X. Li, D.J. Li, et al., Comparative study of corrosion behaviors of die cast LA42 and AZ91 alloys, J. Magnes. Alloys, (2022). DOI: https://doi.org/10.1016/j.jma.2022.10.022

[31]

GuoEY, ShuaiSS, KazantsevD, et al.. The influence of nanoparticles on dendritic grain growth in Mg alloys. Acta Mater., 2018, 152: 127

[32]

WongC, StylesMJ, ZhuSM, et al.. (Al,Mg)3La: A new phase in the Mg-Al-La system. Acta Cryst., 2018, 74: 370

[33]

ZhangJH, ZhangDP, TianZ, et al.. Microstructures, tensile properties and corrosion behavior of die-cast Mg-4Al-based alloys containing La and/or Ce. Mater. Sci. Eng. A, 2008, 489(1–2): 113

[34]

FengLY, DongXX, XiaMX, et al.. Development of high thermal conductivity, enhanced strength and cost-effective diecast Mg alloy compared with AE44 alloy. J. Mater. Res. Technol., 2023, 22: 2955

[35]

S.M. Zhu, C. Wong, M.J. Styles, T.B. Abbott, J.F. Nie, and M.A. Easton, Revisiting the intermetallic phases in high-pressure die-cast Mg-4Al-4Ce and Mg-4Al-4La alloys, Mater. Charact., 156(2019), art. No. 109839.

[36]

X. Zhang, L. Li, Z. Wang, et al., Ultrafine-grained Al-La-Mg-Mn alloy with superior thermal stability and strength-ductility synergy, Mater. Sci. Eng. A, 873(2023), art. No. 145035.

[37]

ZhangXK, LiLJ, WangZ, PengHL, GaoJX, PengZW. A novel high-strength Al-La-Mg-Mn alloy for selective laser melting. J. Mater. Sci. Technol., 2023, 137(20): 205

[38]

LiuC, LuoQ, GuQF, LiQ, ChouKC. Thermodynamic assessment of Mg-Ni-Y system focusing on long-period stacking ordered phases in the Mg-rich corner. J. Magnes. Alloys, 2022, 10(11): 3250

[39]

ChenHC, XuW, LuoQ, et al.. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X = Ni, Mn, Si, Cr) systems with dilatational coefficient model. J. Mater. Sci. Technol., 2022, 112: 291

[40]

ZhangQ, ChenHC, LuoQ, YuanY, LiuHQ, LiQ. The design of Ti-Cu-Ni-Zr titanium alloy solder: Thermodynamic calculation and experimental validation. J. Mater. Sci., 2022, 57(12): 6819

[41]

ZhangS, LiQQ, ChenHC, LuoQ, LiQ. Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability. Int. J. Miner. Metall. Mater., 2022, 29(8): 1543

[42]

Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, and Q. Li, Experimental study and thermodynamic evaluation of Mg-La-Zn system, J. Alloys Compd., 814(2020), art. No. 152297.

[43]

LuoQ, ZhaiC, SunDK, ChenW, LiQ. Interpolation and extrapolation with the CALPHAD method. J. Mater. Sci. Technol., 2019, 35(9): 2115

[44]

HuangL, LiuSH, DuY, ZhangC. Thermal conductivity of the Mg-Al-Zn alloys: Experimental measurement and CALPHAD modeling. Calphad, 2018, 62: 99

[45]

ZhaiC, LuoQ, CaiQ, GuanRG, LiQ. Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg-Nd system under a static magnetic field. J. Alloys Compd., 2019, 773: 202

[46]

WangY, KangHJ, GuoY, ChenHT, HuML, JiZS. Design and preparation of aluminum alloy with high thermal conductivity based on CALPHAD and first-principles calculation. China Foundry, 2022, 19(3): 225

[47]

ZhangC, DuY, LiuSH, LiuYL, SundmanB. Thermal conductivity of Al-Cu-Mg-Si alloys: Experimental measurement and CALPHAD modeling. Thermochim. Acta, 2016, 635: 8

[48]

HosseinifarM, MalakhovDV. On the fabricability of a composite material containing the FCC matrix with embedded ductile B2 intermetallics. J. Alloys Compd., 2010, 505(2): 459

[49]

J.M. Joubert, B. Kaplan, and M. Selleby, The specific heat of Al-based compounds, evaluation of the Neumann-Kopp rule and proposal for a modified Neumann-Kopp rule, Calphad, 81(2023), art. No. 102562.

[50]

LeeDK, InJ, LeeS. Standard deviation and standard error of the mean. Korean J. Anesthesiol., 2015, 68(3): 220

[51]

SuCY, LiDJ, LuoAA, ShiRH, ZengXQ. Quantitative study of microstructure-dependent thermal conductivity in Mg-4Ce-xAl-0.5Mn alloys. Metall. Mater. Trans. A, 2019, 50(4): 1970

[52]

HoCY, AckermanMW, WuKY, et al.. Electrical resistivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data, 1983, 12(2): 183

[53]

H. Shi, Q. Li, J.Y. Zhang, Q. Luo, and K.C. Chou, Re-assessment of the Mg-Zn-Ce system focusing on the phase equilibria in Mg-rich corner, Calphad, 68(2020), art. No. 101742.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

291

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/