Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process
Liping Tang, Pengfei Wei, Zhili Hu, Qiu Pang
Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming (PHF) process directly determines the quality of the formed components. The microstructure stability of the pre-hardened sheets was investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS), while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests. The results indicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging (NA). The deviations of ultimate tensile strength (UTS), yield strength (YS), and sheet formability (Erichsen value) are all less than 2%. Also, after different NA time (from 48 h to 1 month) is applied to alloys before pre-hardening treatment, the pre-hardened alloys possess stable microstructure and mechanical properties as well. Interestingly, with the extension of NA time before pre-hardening treatment from 48 h to 1 month, the contribution of NA to the pre-hardening treatment is limited. Only a yield strength increment of 20 MPa is achieved, with no loss in elongation. The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston (GP) zones at the early stage of pre-hardening treatment, and the formation of θ″ phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves.
Al–Cu alloy / pre-hardened alloy / natural aging / mechanical properties / microstructure
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
L. Hua, W.P. Zhang, H.J. Ma, and Z.L. Hu, Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming, Int. J. Mach. Tools Manuf., 169(2021), art. No. 103799.
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
G.J. Li, M.X. Guo, J.Q. Du, and L.Z. Zhuang, Synergistic improvement in bake-hardening response and natural aging stability of Al–Mg–Si–Cu–Zn alloys via non-isothermal pre-aging treatment, Mater. Des., 218(2022), art. No. 110714.
|
[[13]] |
|
[[14]] |
J.A. Österreicher, D. Nebeling, F. Grabner, et al., Secondary ageing and formability of an Al–Cu–Mg alloy (2024) in W and under-aged tempers, Mater. Des., 226(2023), art. No. 111634.
|
[[15]] |
P.A. Rometsch, S.X. Gao, and M.J. Couper, Effect of composition and pre-ageing on the natural ageing and paint-baking behaviour of Al–Mg–Si Alloys, [in] H. Weiland, A.D. Rollett, and W.A. Cassada, eds., The 13th International Conference on Aluminum Alloys, Pittsburgh, PA, 2012, p. 15.
|
[[16]] |
|
[[17]] |
S.Z. Zhu, D. Wang, B.L. Xiao, and Z.Y. Ma, Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al–Mg–Si composites, Composites Part B, 236(2022), art. No. 109851.
|
[[18]] |
|
[[19]] |
J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al–Zn–Mg–Cu alloy, J. Alloys Compd., 829(2020), art. No. 154469.
|
[[20]] |
|
[[21]] |
K.C. Yu, L.G. Hou, M.X. Guo, et al., A method for determining R-value of aluminum sheets with the Portevin-Le Chatelier effect, Mater. Sci. Eng. A, 814(2021), art. No. 141246.
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
G.A. Li, Z. Ma, J.T. Jiang, W.Z. Shao, W. Liu, and L. Zhen, Effect of pre-stretch on the precipitation behavior and the mechanical properties of 2219 Al alloy, Materials, 14(2021), No. 9, art. No. 2101.
|
[[27]] |
W.P. Zhang, H.H. Li, Z.L. Hu, and L. Hua, Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process, Mater. Sci. Eng. A, 792(2020), art. No. 139749.
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
R. Santos-Güemes, L. Capolungo, J. Segurado, and J. LLorca, Dislocation dynamics prediction of the strength of Al–Cu alloys containing shearable θ″ precipitates, J. Mech. Phys. Solids, 151(2021), art. No. 104375.
|
[[32]] |
J.Y. Li, S.L. Lü, S.S. Wu, D.J. Zhao, and W. Guo, Micro-mechanism of simultaneous improvement of strength and ductility of squeeze-cast Al–Cu alloy, Mater. Sci. Eng. A, 833(2022), art. No. 142538.
|
[[33]] |
|
[[34]] |
|
[[35]] |
Z.G. Chen, J.L. He, Y.Y. Zheng, and C.H. Lu, Mechanical performance improvement of Al–Cu–Mg using various thermomechanical treatments, Mater. Sci. Eng. A, 841(2022), art. No. 142869.
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
B.X. Xie, L. Huang, Z.Y. Wang, X.X. Li, and J.J. Li, Microstructural evolution and mechanical properties of 2219 aluminum alloy from different aging treatments to subsequent electromagnetic forming, Mater. Charact., 181(2021), art. No. 111470.
|
[[43]] |
|
[[44]] |
|
[[45]] |
|
[[46]] |
|
[[47]] |
J.S. Yang, C.H. Liu, P.P. Ma, L.H. Chen, L.H. Zhan, and N. Yan, Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al–Cu alloy, Int. J. Plast., 158(2022), art. No. 103413.
|
[[48]] |
Z.Q. Li, W.R. Ren, H.W. Chen, and J.F. Nie, θ‴ precipitate phase, GP zone clusters and their origin in Al–Cu alloys, J. Alloys Compd., 930(2023), art. No. 167396.
|
[[49]] |
Y. Chen, A.Q. Wang, J.P. Xie, and Y.C. Guo, Deformation mechanisms in Al/Al2Cu/Cu multilayer under compressive loading, J. Alloys Compd., 885(2021), art. No. 160921.
|
[[50]] |
|
[[51]] |
H. Miyoshi, H. Kimizuka, A. Ishii, and S. Ogata, Competing nucleation of single- and double-layer Guinier-Preston zones in Al–Cu alloys, Sci. Rep., 11(2021), No. 1, art. No. 4503.
|
[[52]] |
|
[[53]] |
|
[[54]] |
A. Somoza, M.P. Petkov, K.G. Lynn, and A. Dupasquier, Stability of vacancies during solute clustering in Al–Cu-based alloys, Phys. Rev. B, 65(2002), No. 9, art. No. 094107.
|
[[55]] |
|
[[56]] |
|
[[57]] |
|
/
〈 | 〉 |