Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification

Xiangyu Xu, Lu Zhang, Zifei Wang, Qianren Tian, Jianxun Fu, Xuemin Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (8) : 1849-1857. DOI: 10.1007/s12613-023-2757-8
Research Article

Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification

Author information +
History +

Abstract

Te treatment is an effective method for modifying sulfide inclusions, and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance. In most actual industrial applications of Te treatment, MnTe precipitation is unexpected. The critical precipitation behavior of MnTe inclusions was investigated through scanning electron microscopy, transmission electron microscopy, machine learning, and first-principles calculation. MnTe preferentially precipitated at the container mouth for sphere-like sulfides and at the interface between MnS grain boundaries and steel matrix for rod-like sulfides. The MnS/MnTe interface was semicoherent. A composition transition zone with a rock-salt structure exhibiting periodic changes existed to maintain the semicoherent interface. The critical precipitation behavior of MnTe inclusions in resulfurized steels involved three stages at varying temperatures. First, Mn(S,Te) precipitated during solidification. Second, MnTe with a rock-salt structure precipitated from Mn(S,Te). Third, MnTe with a hexagonal NiAs structure transformed from the rock-salt structure. The solubility of Te in MnS decreased with decreasing temperature. The critical precipitation behavior of MnTe inclusions in resulfurized steels was related to the MnS precipitation temperature. With the increase in MnS precipitation temperature, the critical Te/S weight ratio decreased. In consideration of the cost-effectiveness of Te addition for industrial production, the Te content in resulfurized steels should be controlled in accordance with MnS precipitation temperature and S content.

Keywords

resulfurized steels / modification of inclusion / manganese telluride / precipitation

Cite this article

Download citation ▾
Xiangyu Xu, Lu Zhang, Zifei Wang, Qianren Tian, Jianxun Fu, Xuemin Wang. Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(8): 1849‒1857 https://doi.org/10.1007/s12613-023-2757-8

References

[[1]]
Xu XY, Chung TF, Hu SH, et al.. Effect of tin microalloying on the microstructure of low-carbon free-machining steels. J. Mater. Res. Technol., 2022, 20: 1172,
CrossRef Google scholar
[[2]]
Tian QR, Xu XY, Li J, et al.. Formation mechanism of band delta-ferrite in 416 stainless steel and its relationship with MnS and M23C6. Metall. Mater. Trans. B, 2021, 52(4): 2355,
CrossRef Google scholar
[[3]]
Xie JB, Fan T, Sun H, Zeng ZQ, Fu JX. Enhancement of impurity, machinability and mechanical properties in Te-treated 0Cr18Ni9 steel. Met. Mater. Int., 2021, 27(6): 1416,
CrossRef Google scholar
[[4]]
Z.Q. Liu, Y. Zhang, W. Shi, and S. Xiang, Layer-by-layer analysis of gradient corrosion behavior of ultrasonic rolling-processed 20CrMnTi steel, Mater. Lett., 334(2023), art. No. 133740.
[[5]]
Liu NF, Xu XY, Wang ZF, et al.. Effect of tellurium on sulfide inclusion, microstructure and properties of industrial bars of a medium-carbon microalloyed steel. J. Mater. Res. Technol., 2023, 24: 2226,
CrossRef Google scholar
[[6]]
Desaigues JE, Lescalier C, Bomont-Arzur A, Dudzinski D, Bomont O. Experimental study of Built-Up Layer formation during machining of high strength free-cutting steel. J. Mater. Process. Technol., 2016, 236: 204,
CrossRef Google scholar
[[7]]
Wu M, Fang W, Chen RM, et al.. Mechanical anisotropy and local ductility in transverse tensile deformation in hot rolled steels: The role of MnS inclusions. Mater. Sci. Eng. A, 2019, 744: 324,
CrossRef Google scholar
[[8]]
Han P, Liu ZP, Xie ZJ, et al.. Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel. Int. J. Miner. Metall. Mater., 2023, 30(7): 1329,
CrossRef Google scholar
[[9]]
Xie ZJ, Shang CJ, Wang XL, Wang XM, Han G, Misra RDK. Recent progress in third-generation low alloy steels developed under M3 microstructure control. Int. J. Miner. Metall. Mater., 2020, 27(1): 1,
CrossRef Google scholar
[[10]]
Zhang HH, Wan LH, Long MJ, et al.. Quantitative investigation on the evolution of Ti(cx, N1−x) in ultra-high-strength steel slab during TSCR process: Precipitation and redissolution. Metall. Mater. Trans. B, 2023, 54(5): 2492,
CrossRef Google scholar
[[11]]
X.Y. Xu, Q.R. Tian, T. Hu, D.P. Ji, Q. Qian, and J.X. Fu, Tellurium treatment for the modification of sulfide inclusions and corresponding industrial applications in special steels: A review, Steel Res. Int., 94(2023), No. 5, art.No.2200375.
[[12]]
Gupta G, Robertson DGC, Schlesinger ME. Tellurium thermodynamics in austenitic iron. Can. Metall. Q., 2005, 44(3): 351,
CrossRef Google scholar
[[13]]
Hoffmann K, Sauer KH, Grabke HJ. Untersuchungen zur löslichkeit, korngrenzensegregation und chemisch-analytischen bestimmung des tellurs im eisen. Steel Res., 1988, 59(4): 139,
CrossRef Google scholar
[[14]]
Zheng LC, Malfliet A, Wollants P, Blanpain B, Guo MX. Effect of surfactant Te on the formation of MnS inclusions in steel. Metall. Mater. Trans. B, 2017, 48(5): 2447,
CrossRef Google scholar
[[15]]
P. Shen, H. Zhang, X.Y. Xu, Q.K. Yang, and J.X. Fu, Study on the high-temperature evolution and formation mechanism of inclusions in Te-treated resulfurized special steel, Steel Res. Int., 92(2021), No. 11, art.No.2100235.
[[16]]
Zhang S, Wang F, Yang SF, Liu JH, Li JS. Sulfide transformation with tellurium treatment for Y15 free-cutting steel. Metall. Mater. Trans. B, 2019, 50(5): 2284,
CrossRef Google scholar
[[17]]
Huang Q, Ren Y, Luo Y, Ji S, Zhang LF. Deformation of MnS–MnTe inclusions in a sulfur-containing free-cutting steel with tellurium treatment. Metall. Mater. Trans. B, 2023, 54(1): 370,
CrossRef Google scholar
[[18]]
P. Shen, Q.K. Yang, D. Zhang, S.F. Yang, and J.X. Fu, The effect of tellurium on the formation of MnTe-MnS composite inclusions in non-quenched and tempered steel, Metals, 8(2018), No. 8, art. No. 639.
[[19]]
Katoh T, Abeyama S, Kimura A, Nakamura S. A study on resulfurized free-machining steel containing a small amount of tellurium. Denki Seiko, 1982, 53(3): 195,
CrossRef Google scholar
[[20]]
S.F. Yang, Z.C. Che, C. Liu, et al., Mechanism of the dual effect of Te addition on the localised corrosion resistance of 15–5PH stainless steel, Corros. Sci., 212(2023), art. No. 110970.
[[21]]
Tien TY, Van Vlack LH, Martin RJ. . The System MnTe–MnS: Progress Report, 1967 New York The University of Michigan
[[22]]
P. Shen, L. Zhou, Q.K. Yang, Z.Q. Zeng, K.N. Ai, and J.X. Fu, Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel, Metall. Res. Technol., 117(2020), No. 6, art. No. 615.
[[23]]
Xu XY, Li YT, Wang ZF, et al.. Tellurium doping in MnS inclusions and corresponding modification effect: Experimental and first-principles study. Metall. Mater. Trans. A, 2023, 54(11): 4558,
CrossRef Google scholar
[[24]]
Xu G, He JS, ZM, Li M, Xu JW. Prediction of mechanical properties for deep drawing steel by deep learning. Int. J. Miner. Metall. Mater., 2023, 30(1): 156,
CrossRef Google scholar
[[25]]
X.J. Yang, J.H. Jia, Q. Li, et al., Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2661-2
[[26]]
Pan GF, Wang FY, Shang CL, et al.. Advances in machine learning- and artificial intelligence-assisted material design of steels. Int. J. Miner. Metall. Mater., 2023, 30(6): 1003,
CrossRef Google scholar
[[27]]
Zhang RH, Yang J. State of the art in applications of machine learning in steelmaking process modeling. Int. J. Miner. Metall. Mater., 2023, 30(11): 2055,
CrossRef Google scholar
[[28]]
J. Kuang and Z. Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2679-5
[[29]]
Xin ZC, Zhang JS, Jin Y, Zheng J, Liu Q. Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network. Int. J. Miner. Metall. Mater., 2023, 30(2): 335,
CrossRef Google scholar
[[30]]
Li FF, He AR, Song Y, et al.. Deep learning for predictive mechanical properties of hot-rolled strip in complex manufacturing systems. Int. J. Miner. Metall. Mater., 2023, 30(6): 1093,
CrossRef Google scholar
[[31]]
Pedregosa F, Varoquaux G, Gramfort A, et al.. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 2011, 12: 2825
[[32]]
Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter, 1994, 6(40): 8245
[[33]]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169,
CrossRef Google scholar
[[34]]
Blöchl PE. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953,
CrossRef Google scholar
[[35]]
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865,
CrossRef Pubmed Google scholar
[[36]]
Q.R. Tian, N.F. Liu, W. Shen, X.Y. Xu, and J.X. Fu, Morphological differences of MnS inclusions in medium-carbon steel with different manganese and sulfur contents, Steel Res. Int., 94(2023), No. 9, art.No. 2300074.
[[37]]
Q.R. Tian, B. Liu, W. Shen, T. Hu, J.X. Fu, and X.Y. Xu, Nucleation, growth, sintering, and densification of sulfide in 1215MS free-cutting steel billet, Steel Res. Int., 94(2023), No. 6, art.No. 2200674.
[[38]]
Kuriyama M, Hosoya S. X-ray measurement of scattering factors of manganese and oxygen atoms in manganous oxide. J. Phys. Soc. Jpn., 1962, 17(6): 1022,
CrossRef Google scholar
[[39]]
Leung CH, Van Vlack LH. Solubility limits in binary (Ca, Mn) chalcogenides. J. Am. Ceram. Soc., 1979, 62(11–12): 613,
CrossRef Google scholar
[[40]]
Griffiths CH. Cubic manganous telluride. J. Mater. Sci., 1978, 13(3): 513,
CrossRef Google scholar
[[41]]
W.T. Lv, L.C. Yan, X.L. Pang, et al., Study of the stability of α-Fe/MnS interfaces from first principles and experiment, Appl. Surf. Sci., 501(2020), art. No. 144017.
[[42]]
Panson AJ, Johnston WD. The MnTe–MnSe system. J. Inorg. Nucl. Chem., 1964, 26(5): 701,
CrossRef Google scholar
[[43]]
Johnston WD, Sestrich DE. The MnTe–GeTe phase diagram. J. Inorg. Nucl. Chem., 1961, 19(3–4): 229,
CrossRef Google scholar
[[44]]
Abdul Noor SS. Magnetic phase transition in Mn0.5Te0.5–xSbx. J. Appl. Phys., 1987, 61(8): 3549,
CrossRef Google scholar
[[45]]
Furuseth S, Kjekshus A, Niklasson RJV, Brunvoll J, Hinton M. On the properties of alpha-MnS and MnS2. Acta Chem. Scand., 1965, 19: 1405,
CrossRef Google scholar
[[46]]
Shen W, Li ZW, Tian QR, Fu JX. Modification of sulfide distribution in 46MnVS non-quenched and tempered steel by tellurium. Steelmaking, 2023, 39(2): 56
[[47]]
Liu ZZ, Wei J, Cai KK. A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel. ISIJ Int., 2002, 42(9): 958,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/