Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification
Xiangyu Xu, Lu Zhang, Zifei Wang, Qianren Tian, Jianxun Fu, Xuemin Wang
Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification
Te treatment is an effective method for modifying sulfide inclusions, and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance. In most actual industrial applications of Te treatment, MnTe precipitation is unexpected. The critical precipitation behavior of MnTe inclusions was investigated through scanning electron microscopy, transmission electron microscopy, machine learning, and first-principles calculation. MnTe preferentially precipitated at the container mouth for sphere-like sulfides and at the interface between MnS grain boundaries and steel matrix for rod-like sulfides. The MnS/MnTe interface was semicoherent. A composition transition zone with a rock-salt structure exhibiting periodic changes existed to maintain the semicoherent interface. The critical precipitation behavior of MnTe inclusions in resulfurized steels involved three stages at varying temperatures. First, Mn(S,Te) precipitated during solidification. Second, MnTe with a rock-salt structure precipitated from Mn(S,Te). Third, MnTe with a hexagonal NiAs structure transformed from the rock-salt structure. The solubility of Te in MnS decreased with decreasing temperature. The critical precipitation behavior of MnTe inclusions in resulfurized steels was related to the MnS precipitation temperature. With the increase in MnS precipitation temperature, the critical Te/S weight ratio decreased. In consideration of the cost-effectiveness of Te addition for industrial production, the Te content in resulfurized steels should be controlled in accordance with MnS precipitation temperature and S content.
resulfurized steels / modification of inclusion / manganese telluride / precipitation
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
Z.Q. Liu, Y. Zhang, W. Shi, and S. Xiang, Layer-by-layer analysis of gradient corrosion behavior of ultrasonic rolling-processed 20CrMnTi steel, Mater. Lett., 334(2023), art. No. 133740.
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
X.Y. Xu, Q.R. Tian, T. Hu, D.P. Ji, Q. Qian, and J.X. Fu, Tellurium treatment for the modification of sulfide inclusions and corresponding industrial applications in special steels: A review, Steel Res. Int., 94(2023), No. 5, art.No.2200375.
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
P. Shen, H. Zhang, X.Y. Xu, Q.K. Yang, and J.X. Fu, Study on the high-temperature evolution and formation mechanism of inclusions in Te-treated resulfurized special steel, Steel Res. Int., 92(2021), No. 11, art.No.2100235.
|
[[16]] |
|
[[17]] |
|
[[18]] |
P. Shen, Q.K. Yang, D. Zhang, S.F. Yang, and J.X. Fu, The effect of tellurium on the formation of MnTe-MnS composite inclusions in non-quenched and tempered steel, Metals, 8(2018), No. 8, art. No. 639.
|
[[19]] |
|
[[20]] |
S.F. Yang, Z.C. Che, C. Liu, et al., Mechanism of the dual effect of Te addition on the localised corrosion resistance of 15–5PH stainless steel, Corros. Sci., 212(2023), art. No. 110970.
|
[[21]] |
|
[[22]] |
P. Shen, L. Zhou, Q.K. Yang, Z.Q. Zeng, K.N. Ai, and J.X. Fu, Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel, Metall. Res. Technol., 117(2020), No. 6, art. No. 615.
|
[[23]] |
|
[[24]] |
|
[[25]] |
X.J. Yang, J.H. Jia, Q. Li, et al., Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2661-2
|
[[26]] |
|
[[27]] |
|
[[28]] |
J. Kuang and Z. Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2679-5
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
Q.R. Tian, N.F. Liu, W. Shen, X.Y. Xu, and J.X. Fu, Morphological differences of MnS inclusions in medium-carbon steel with different manganese and sulfur contents, Steel Res. Int., 94(2023), No. 9, art.No. 2300074.
|
[[37]] |
Q.R. Tian, B. Liu, W. Shen, T. Hu, J.X. Fu, and X.Y. Xu, Nucleation, growth, sintering, and densification of sulfide in 1215MS free-cutting steel billet, Steel Res. Int., 94(2023), No. 6, art.No. 2200674.
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
W.T. Lv, L.C. Yan, X.L. Pang, et al., Study of the stability of α-Fe/MnS interfaces from first principles and experiment, Appl. Surf. Sci., 501(2020), art. No. 144017.
|
[[42]] |
|
[[43]] |
|
[[44]] |
|
[[45]] |
|
[[46]] |
|
[[47]] |
|
/
〈 | 〉 |