Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase
Dajun Zhai, Xiaoping Li, Jun Shen
Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase
This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution of β-Mg17Al12 phase in AZ91D Mg alloy. Two kinds of nano-particles (ZrO2 and TiO2) were designed to be added into the substrate of Mg alloy by friction stir processing (FSP). Then, Mg alloy sample designed with different precipitated morphology of β-Mg17Al12 phase was treated by microarc oxidation (MAO) in Na3PO4/Na2SiO3 electrolyte. The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle meter, and potentiodynamic polarization. It was found that the coarse α-Mg grains in extruded AZ91D Mg alloy were refined by FSP, and the β-Mg17Al12 phase with reticular structure was broken and dispersed. The nano-ZrO2 particles were pinned at the grain boundary by FSP, which refined the α-Mg grain and promoted the precipitation of β-Mg17Al12 phase in grains. It effectively inhibited the “cascade” phenomenon of microarcs, which induced the uniform distribution of discharge pores. The MAO coating on Zr-FSP sample had good wettability and corrosion resistance. However, TiO2 particles were hardly detected in the coating on Ti-FSP sample.
AZ91D Mg alloy / microarc oxidation / friction stir processing / ZrO2 / TiO2 / β-Mg17Al12
[[1]] |
|
[[2]] |
|
[[3]] |
S.S. Park, U. Farwa, I. Park, B.G. Moon, S.B. Im, and B.T. Lee, In-vivo bone remodeling potential of Sr–d-Ca–P/PLLA-HAp coated biodegradable ZK60 alloy bone plate, Mater. Today Bio, 18(2023), art. No. 100533.
|
[[4]] |
|
[[5]] |
|
[[6]] |
D.D. Wang, X.T. Liu, Y. Wang, et al., Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation, Surf. Coat. Technol., 402(2020), art. No. 126349.
|
[[7]] |
X.N. Ly, S. Yang, and T. Nguyen, Effect of equal channel angular pressing as the pretreatment on microstructure and corrosion behavior of micro-arc oxidation (MAO) composite coating on biodegradable Mg–Zn–Ca alloy, Surf. Coat. Technol., 395(2020), art. No. 125923.
|
[[8]] |
|
[[9]] |
L. Casanova, M. Arosio, M.T. Hashemi, M. Pedeferri, G.A. Botton, and M. Ormellese, A nanoscale investigation on the influence of anodization parameters during plasma electrolytic oxidation of titanium by high-resolution electron energy loss spectroscopy, Appl. Surf. Sci., 570(2021), art. No. 151133.
|
[[10]] |
D.S. Tsai and C.C. Chou, Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review, Coatings, 11(2021), No. 3, art. No. 270.
|
[[11]] |
|
[[12]] |
|
[[13]] |
E.Y. Liu, Y.F. Niu, S.R. Yu, et al., Micro-arc oxidation behavior of fly ash cenospheres/magnesium alloy degradable composite and corrosion resistance of coatings, Surf. Coat. Technol., 391(2020), art. No. 125693.
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
Y. Wang, B.W. Yang, M.Q. Gao, E.T. Zhao, and R.G. Guan, Microstructure evolution, mechanical property response and strengthening mechanism induced by compositional effects in Al–6Mg alloys, Mater. Des., 220(2022), art. No. 110849.
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
S.K. Yang, C. Wang, F.Z. Li, et al., One-step in situ growth of a simple and efficient pore-sealing coating on micro-arc oxidized AZ31B magnesium alloy, J. Alloys Compd., 909(2022), art. No. 164710.
|
[[34]] |
|
[[35]] |
M. Stern, Electrochemical polarization, J. Electrochem. Soc., 104(1957), No. 9, art. No. 559.
|
[[36]] |
|
[[37]] |
C.H. Shih, C.Y. Huang, T.H. Hsiao, and C.S. Lin, The effect of the secondary phases on the corrosion of AZ31B and WE43–T5 Mg alloys, Corros. Sci., 211(2023), art. No. 110920.
|
[[38]] |
|
[[39]] |
S.W. Guan, M. Qi, Y.D. Li, and W.Q. Wang, Morphology evolution of the porous coatings on Ti–xAl alloys by Al adding into Ti during micro-arc oxidation in Na2B4O7 electrolyte, Surf. Coat. Technol., 395(2020), art. No. 125948.
|
/
〈 | 〉 |