Microstructure and thermal properties of dissimilar M300-CuCr1Zr alloys by multi-material laser-based powder bed fusion
Xiaoshuang Li, Dmitry Sukhomlinov, Zaiqing Que
Microstructure and thermal properties of dissimilar M300-CuCr1Zr alloys by multi-material laser-based powder bed fusion
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel. Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of 0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone. Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150% compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.
multi-material additive manufacturing / laser-based powder bed fusion / thermal diffusivity / dissimilar metals / copper alloy
[[1]] |
|
[[2]] |
S.C. Feng, A.M. Kamat, and Y.T. Pei, Design and fabrication of conformal cooling channels in molds: Review and progress updates, Int. J. Heat Mass Transf., 171(2021), art. No. 121082.
|
[[3]] |
J. Lee, J. Choe, J. Park, et al., Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions, Mater. Charact., 155(2019), art. No. 109817.
|
[[4]] |
K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. Van Humbeeck, and J.P. Kruth, Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating, J. Manuf. Sci. Eng., 136(2014), No. 6, art. No. 061026.
|
[[5]] |
K. Bae, D. Kim, W. Lee, and Y. Park, Wear behavior of conventionally and directly aged maraging 18Ni–300 steel produced by laser powder bed fusion, Materials, 14(2021), No. 10, art. No. 2588.
|
[[6]] |
L. Wu, S. Das, W. Gridin, et al., Hot work tool steel processed by laser powder bed fusion: A review on most relevant influencing factors, Adv. Eng. Mater., 23(2021), No. 7, art. No. 2100049.
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
M. Schneck, M. Horn, M. Schindler, and C. Seidel, Capability of multi-material laser-based powder bed fusion—Development and analysis of a prototype large bore engine component, Metals, 12(2021), No. 1, art. No. 44.
|
[[13]] |
|
[[14]] |
|
[[15]] |
C. Wei, L.C. Liu, Y.C. Gu, et al., Multi-material additive-manufacturing of tungsten-copper alloy bimetallic structure with a stainless-steel interlayer and associated bonding mechanisms, Addit. Manuf., 50(2022), art. No. 102574.
|
[[16]] |
Y.C. Bai, J.Y. Zhang, C.L. Zhao, C.J. Li, and H. Wang, Dual interfacial characterization and property in multi-material selective laser melting of 316L stainless steel and C52400 copper alloy, Mater. Charact., 167(2020), art. No. 110489.
|
[[17]] |
J. Chen, Y.Q. Yang, C.H. Song, D. Wang, S.B. Wu, and M.K. Zhang, Influence mechanism of process parameters on the interfacial characterization of selective laser melting 316L/CuSn10, Mater. Sci. Eng. A, 792(2020), art. No. 139316.
|
[[18]] |
J. Chen, Y.Q. Yang, D. Wang, Z.X. Liu, and C.H. Song, Effect of manufacturing steps on the interfacial defects of laser powder bed fusion 316L/CuSn10, Mater. Lett., 292(2021), art. No. 129377.
|
[[19]] |
|
[[20]] |
|
[[21]] |
S.L. Mao, D.Z. Zhang, Z.H. Ren, G. Fu, and X.Y. Ma, Effects of process parameters on interfacial characterization and mechanical properties of 316L/CuCrZr functionally graded material by selective laser melting, J. Alloys Compd., 899(2022), art. No. 163256.
|
[[22]] |
C. Anstaett, C. Seidel, and G. Reinhart, Fabrication of 3D multi-material parts using laser-based powder bed fusion, [in] 2017 International Solid Freeform Fabrication Symposium, Austin, 2017, p. 9.
|
[[23]] |
A. Cunha, A. Marques, F.S. Silva, et al., 420 stainless steel-Cu parts fabricated using 3D multi-material laser powder bed fusion: A new solution for plastic injection moulds, Mater. Today Commun., 32(2022), art. No. 103852.
|
[[24]] |
V. Lindström, O. Liashenko, K. Zweiacker, et al., Laser powder bed fusion of metal coated copper powders, Materials, 13(2020), No. 16, art. No. 3493.
|
[[25]] |
S.D. Jadhav, L.R. Goossens, Y. Kinds, B. Van Hooreweder, and K. Vanmeensel, Laser-based Powder bed fusion additive manufacturing of pure copper, Addit. Manuf., 42(2021), art. No. 101990.
|
[[26]] |
P.F. Guan, X.H. Chen, P. Liu, et al., Effect of selective laser melting process parameters and aging heat treatment on properties of CuCrZr alloy, Mater. Res. Express, 6(2019), No. 11, art. No. 1165c1.
|
[[27]] |
Z.B. Ma, K.F. Zhang, Z.H. Ren, D.Z. Zhang, G.B. Tao, and H.S. Xu, Selective laser melting of Cu-Cr-Zr copper alloy: Parameter optimization, microstructure and mechanical properties, J. Alloys Compd., 828(2020), art. No. 154350.
|
[[28]] |
|
[[29]] |
R.P. Polkam, Laser Powder Bed Fusion of CuNi2SiCr Alloy: Process Parameters Optimization and Electro-mechanical Characterization [Dissertation], Politecnico di Torino, Torino, 2022.
|
[[30]] |
|
[[31]] |
X. Li, N. Gianfolcaro, O. Dedry, and A. Mertens, Microstructure and properties of multi-material parts by PBF-LB, [in] WorldPM2022 Proceedings, Lyon, 2022.
|
[[32]] |
E.A. Jägle, Z.D. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, and D. Raabe, Comparison of maraging steel micro- and nano-structure produced conventionally and by laser additive manufacturing, Materials, 10(2016), No. 1, art. No. 8.
|
[[33]] |
|
[[34]] |
B. Podgornik, M. Šinko, and M. Godec, Dependence of the wear resistance of additive-manufactured maraging steel on the build direction and heat treatment, Addit. Manuf., 46(2021), art. No. 102123.
|
[[35]] |
|
[[36]] |
C. Salvan, L. Briottet, T. Baffie, L. Guetaz, and C. Flament, CuCrZr alloy produced by laser powder bed fusion: Microstructure, nanoscale strengthening mechanisms, electrical and mechanical properties, Mater. Sci. Eng. A, 826(2021), art. No. 141915.
|
[[37]] |
|
[[38]] |
|
/
〈 | 〉 |