Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review

Qinghe Cui, Xuefeng Liu, Wenjing Wang, Shaojie Tian, Vasili Rubanik, Vasili Rubanik, Dzmitry Bahrets

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1322-1332. DOI: 10.1007/s12613-023-2745-z
Invited Review

Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review

Author information +
History +

Abstract

Compared with traditional plastic forming, ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece. This technology has a very broad application prospect in industrial manufacturing. Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field. In this review, metals were classified according to their crystal structures. The effects of ultrasonic vibration on the microstructure of face-centered cubic, body-centered cubic, and hexagonal close-packed metals during plastic forming and the mechanism underlying ultrasonic vibration forming were reviewed. The main challenges and future research direction of the ultrasonic vibration plastic forming of metals were also discussed.

Keywords

ultrasonic vibration / plastic forming / crystal structure / microstructure / forming mechanism

Cite this article

Download citation ▾
Qinghe Cui, Xuefeng Liu, Wenjing Wang, Shaojie Tian, Vasili Rubanik, Vasili Rubanik, Dzmitry Bahrets. Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1322‒1332 https://doi.org/10.1007/s12613-023-2745-z

References

[1]
Lin SY. Analysis on the resonance frequency of sandwich ultrasonic transducers with two sets of piezoelectric ceramic elements. Acta Electron. Sin., 2009, 37(11): 2504
[2]
Cheng XM, Yang K, Wang J, Xiao WT, Huang SS. Ultrasonic system and ultrasonic metal welding performance: A status review. J. Manuf. Process., 2022, 84: 1196,
CrossRef Google scholar
[3]
Zhou HY, Cui HZ, Qin QH. Influence of ultrasonic vibration on the plasticity of metals during compression process. J. Mater. Process. Technol., 2018, 251: 146,
CrossRef Google scholar
[4]
Bunget C, Ngaile G. Influence of ultrasonic vibration on micro-extrusion. Ultrasonics, 2011, 51(5): 606,
CrossRef Google scholar
[5]
Z.B. Chen, L.F. Yang, K.Y. Zhang, J.Y. Jiang, and P.J. Zong, Research status of ultrasonic vibration assisted plastic forming process, IOP Conf. Ser.: Mater. Sci. Eng., 758(2020), No. 1, art. No. 012036.
[6]
Kremer D, Saleh SM, Ghabrial SR, Moisan A. The state of the art of ultrasonic machining. CIRP Ann., 1981, 30(1): 107,
CrossRef Google scholar
[7]
Singh R, Khamba JS. Ultrasonic machining of titanium and its alloys: A review. J. Mater. Process. Technol., 2006, 173(2): 125,
CrossRef Google scholar
[8]
Kumar S. Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Arch. Civ. Mech. Eng., 2016, 16(3): 473,
CrossRef Google scholar
[9]
Wei YL. . Research of the Dislocation Structures of Deformed FCC Metals, 2011 Beijing Tsinghua University 59
[10]
Nazarova AA, Mulyukov RR, Rubanik VV, Tsarenko YV, Nazarov AA. Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel. Phys. Met. Metallogr., 2010, 110(6): 574,
CrossRef Google scholar
[11]
Hu J, Shimizu T, Yoshino T, Shiratori T, Yang M. Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests. J. Mater. Process. Technol., 2018, 258: 144,
CrossRef Google scholar
[12]
Hung JC, Lin CC. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting. Mater. Des., 2013, 45: 412,
CrossRef Google scholar
[13]
Bagherzadeh S, Abrinia K, Han QY. Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP: Simulation and experiments. J. Manuf. Process., 2020, 50: 485,
CrossRef Google scholar
[14]
G.D. Shao, H.W. Li, X. Zhang, M. Zhan, and Z.Y. Xiang, Characteristics and mechanism in ultrasonic vibration-assisted deformation of Ni-based superalloy thin-walled sheet by quasi-in-situ EBSD, SSRN Electron. J., 908(2022), art. No. 164591.
[15]
J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, and M. Yang, Evolution of acoustic softening effect on ultrasonic-assisted micro/meso-compression behavior and microstructure, Ultrasonics, 107(2020), art. No. 106107.
[16]
Eaves AE, Smith AW, Waterhouse WJ, Sansome DH. Review of the application of ultrasonic vibrations to deforming metals. Ultrasonics, 1975, 13(4): 162,
CrossRef Google scholar
[17]
D.R. Culp and H.T. Gencsoy, Metal deformation with ultrasound, [in] 1973 Ultrasonics Symposium, Monterey, 1973, p. 195.
[18]
Hu J, Shimizu T, Yang M. Investigation on ultrasonic volume effects: Stress superposition, acoustic softening and dynamic impact. Ultrason. Sonochem., 2018, 48: 240,
CrossRef Google scholar
[19]
Langenecker B. Effects of ultrasound on deformation characteristics of metals. IEEE Trans. Sonics Ultrason., 1966, 13(1): 1,
CrossRef Google scholar
[20]
Blaha F, Langenecker B. Dehnung von Zink-Kristallen unter ultraschalleinwirkung. Naturwissenschaften, 1955, 42: 556,
CrossRef Google scholar
[21]
Sriraman MR, Gonser M, Fujii HT, Babu SS, Bloss M. Thermal transients during processing of materials by very high power ultrasonic additive manufacturing. J. Mater. Process. Technol., 2011, 211(10): 1650,
CrossRef Google scholar
[22]
Kelly GS, Advani SG, Gillespie JW Jr, Bogetti TA. A model to characterize acoustic softening during ultrasonic consolidation. J. Mater. Process. Technol., 2013, 213(11): 1835,
CrossRef Google scholar
[23]
Meng B, Cao BN, Wan M, Wang CJ, Shan DB. Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet. Int. J. Mech. Sci., 2019, 157–158: 609,
CrossRef Google scholar
[24]
Daud Y, Lucas M, Huang ZH. Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium. J. Mater. Process. Technol., 2007, 186(1–3): 179,
CrossRef Google scholar
[25]
Wang CJ, Liu Y, Guo B, Shan DB, Zhang B. Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling. Mater. Des., 2016, 112: 246,
CrossRef Google scholar
[26]
Hung JC, Tsai YC. Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass. Mater. Sci. Eng. A, 2013, 580: 125,
CrossRef Google scholar
[27]
Liu YX, Han QY, Hua L, Xu C. Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip. Ultrasonics, 2013, 53(3): 803,
CrossRef Google scholar
[28]
Q. Mao, N. Coutris, H. Rack, G. Fadel, and J. Gibert, Investigating ultrasound-induced acoustic softening in aluminum and its alloys, Ultrasonics, 102(2020), art. No. 106005.
[29]
Y. Liu, C.J. Wang, and R.G. Bi, Acoustic residual softening and microstructure evolution of T2 copper foil in ultrasonic vibration assisted micro-tension, Mater. Sci. Eng. A, 841(2022), art. No. 143044.
[30]
J.R. Kang, X. Liu, and M.J. Xu, Plastic deformation of pure copper in ultrasonic assisted micro-tensile test, Mater. Sci. Eng. A, 785(2020), art. No. 139364.
[31]
Huang H, Pequegnat A, Chang BH, Mayer M, Du D, Zhou Y. Influence of superimposed ultrasound on deformability of Cu. J. Appl. Phys., 2009, 106(11): 113514,
CrossRef Google scholar
[32]
Yao ZH, Kim GY, Wang ZH, et al.. Acoustic softening and residual hardening in aluminum: Modeling and experiments. Int. J. Plast., 2012, 39: 75,
CrossRef Google scholar
[33]
I. Lum, H. Huang, B.H. Chang, M. Mayer, D. Du, and Y. Zhou, Effects of superimposed ultrasound on deformation of gold, J. Appl. Phys., 105(2009), No. 2, art. No. 024905.
[34]
Zhou TF, Ma CF. Study of ultrasonic vibration-assisted forming in copper cylinder compression. Procedia Manuf., 2020, 50: 199,
CrossRef Google scholar
[35]
Dutta RK, Petrov RH, Delhez R, Hermans MJM, Richardson IM, Böttger AJ. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel. Acta Mater., 2013, 61(5): 1592,
CrossRef Google scholar
[36]
Kang JR, Liu X. Ultrasonic effect on the deformation behavior and microstructure evolution of a TRIP-assisted steel. Metall. Mater. Trans. A, 2021, 52(10): 4468,
CrossRef Google scholar
[37]
Siu KW, Ngan AHW, Jones IP. New insight on acoustoplasticity-Ultrasonic irradiation enhances subgrain formation during deformation. Int. J. Plast., 2011, 27(5): 788,
CrossRef Google scholar
[38]
Westmacott KH, Langenecker B. Dislocation structure in ultrasonically irradiated aluminum. Phys. Rev. Lett., 1965, 14(7): 221,
CrossRef Google scholar
[39]
K. Srivastava, D. Weygand, D. Caillard, and P. Gumbsch, Repulsion leads to coupled dislocation motion and extended work hardening in bcc metals, Nat. Commun., 11(2020), No. 1, art. No. 5098.
[40]
Prabhakar A, Verma GC, Krishnasamy H, Pandey PM, Lee MG, Suwas S. Dislocation density based constitutive model for ultrasonic assisted deformation. Mech. Res. Commun., 2017, 85: 76,
CrossRef Google scholar
[41]
Ma QC, Ma JY, Zhou JL, Zheng XX, Ji HJ. Dislocation behavior in Cu single crystal joints under the ultrasonically excited high-strain-rate deformation. J. Mater. Sci. Technol., 2023, 141: 66,
CrossRef Google scholar
[42]
J. Wang, X.F. He, H. Cao, L.X. Jia, Y.K. Dou, and W. Yang, Screw dislocation slip and its interaction with 1 / 2 [ 11 1 ¯ ] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{1}/{}_{2}[11\bar{1}]$$\end{document} dislocation loop in bcc-Fe at different temperatures, Acta Phys. Sin., 70(2021), No. 6, art. No. 068701.
[43]
Wang J, He XF, Cao H, Wang DJ, Dou YK, Yang W. Molecular dynamics simulation on interaction between screw dislocation and [010] interstitial dislocation loop in BCC-Fe. At. Energy Sci. Technol., 2021, 55(7): 1210
[44]
M. Zohrevand, M. Aghaie-Khafri, F. Forouzan, and E. Vuorinen, Softening mechanisms in ultrasonic treatment of deformed austenitic stainless steel, Ultrasonics, 116(2021), art. No. 106519.
[45]
X.X. Wang, Z.C. Qi, and W.L. Chen, Investigation of mechanical and microstructural characteristics of Ti–45Nb undergoing transversal ultrasonic vibration-assisted upsetting, Mater. Sci. Eng. A, 813(2021), art. No. 141169.
[46]
Nevill G. . Effect of Vibrations on the Yield Strength of a Low Carbon Steel, 1957 Houston Rice University
[47]
Hoseini MD, Shalvandi M, Salimiasl A. Experimental and theatrical evaluation of the effect of grain size of S355J2 on acoustic softening. Modares Mech. Eng., 2018, 18(9): 40
[48]
Ken MT, Jun H, Shimizu T, Ming Y. Shearing characteristics in ultrasonic vibration-assisted piercing of fine-grained stainless steel foils. Procedia Manuf., 2018, 15: 627,
CrossRef Google scholar
[49]
Sitdikov O, Avtokratova E, Latypova O, Markushev M. Structure, strength and superplasticity of ultrafine-grained 1570C aluminum alloy subjected to different thermomechanical processing routes based on severe plastic deformation. Trans. Nonferrous Met. Soc. China, 2021, 31(4): 887,
CrossRef Google scholar
[50]
Deng YL, Shan B, Zhang J, Wang Y, Zhang S. Effect of tensile stress on microstructures and properties of creep aged 6N01 aluminum alloy. J. Cent. South Univ. Sci. Technol., 2018, 49(6): 1358
[51]
X. X. Wang, Z.C. Qi, and W.L. Chen, Investigation of Ti–45Nb alloy’s mechanical and microscopic behaviors under transverse ultrasonic vibration-assisted compression, Mater. Sci. Eng. A, 832(2022), art. No. 142401.
[52]
Panin AV, Kazachenok MS, Kozelskaya AI, Hairullin RR, Sinyakova EA. Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment. Mater. Sci. Eng. A, 2015, 647: 43,
CrossRef Google scholar
[53]
Zhou HY, Cui HZ, Qin QH, Wang H, Shen YG. A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing. Mater. Sci. Eng. A, 2017, 682: 376,
CrossRef Google scholar
[54]
J. Liao, L.X. Zhang, H.L. Xiang, and X. Xue, Mechanical behavior and microstructure evolution of AZ31 magnesium alloy sheet in an ultrasonic vibration-assisted hot tensile test, J. Alloys Compd., 895(2022), art. No. 162575.
[55]
Gao TJ, Wang KX, Lu HT, Yang Y. Effect of compound energy-field with temperature and ultrasonic vibration on mechanical properties of TC2 titanium alloy. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2022, 37(1): 85,
CrossRef Google scholar
[56]
Jiang SS, Jia Y, Zhang HB, et al.. Plastic deformation behavior of Ti foil under ultrasonic vibration in tension. J. Mater. Eng. Perform., 2017, 26(4): 1769,
CrossRef Google scholar
[57]
Han J, Wang C, Song YM, Liu ZY, Sun JP, Zhao JY. Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling. Int. J. Miner. Metall. Mater., 2022, 29(8): 1551,
CrossRef Google scholar
[58]
Ye H, Sun X, Liu Y, Rao XX, Gu Q. Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy. Surf. Coat. Technol., 2019, 372: 288,
CrossRef Google scholar
[59]
Wen T, Wei L, Chen X, Pei CL. Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process. Int. J. Miner. Metall. Mater., 2011, 18(1): 70,
CrossRef Google scholar
[60]
Xie ZD, Guan YJ, Yu XH, Zhu LH, Lin J. Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation. J. Cent. South Univ., 2018, 25(7): 1545,
CrossRef Google scholar
[61]
Liu T, Lin J, Guan YJ, Xie ZD, Zhu LH, Zhai JQ. Effects of ultrasonic vibration on the compression of pure titanium. Ultrasonics, 2018, 89: 26,
CrossRef Google scholar
[62]
Bozdana AT, Gindy NNZ, Li H. Deep cold rolling with ultrasonic vibrations-A new mechanical surface enhancement technique. Int. J. Mach. Tools Manuf., 2005, 45(6): 713,
CrossRef Google scholar
[63]
Zhao J, Liu ZQ. Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti–6Al–4V. Mater. Des., 2016, 107: 238,
CrossRef Google scholar
[64]
Liu S, Shan XB, Guo K, Yang YC, Xie T. Experimental study on titanium wire drawing with ultrasonic vibration. Ultrasonics, 2018, 83: 60,
CrossRef Google scholar
[65]
Yang CQ, Shan XB, Xie T. Titanium wire drawing with longitudinal-torsional composite ultrasonic vibration. Int. J. Adv. Manuf. Technol., 2016, 83(1): 645,
CrossRef Google scholar
[66]
Siegert K, Ulmer J. Influencing the friction in metal forming processes by superimposing ultrasonic waves. CIRP Ann., 2001, 50(1): 195,
CrossRef Google scholar
[67]
S. Liu, T. Xie, J. Han, and X.B. Shan, Stress superposition effect in ultrasonic drawing of titanium wires: An experimental study, Ultrasonics, 125(2022), art. No. 106775.

Accesses

Citations

Detail

Sections
Recommended

/