Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2

Xu Zhao, Naitao Gao, Shengcheng Wu, Shaozhen Li, Sujuan Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (4) : 786-794. DOI: 10.1007/s12613-023-2742-2
Research Article

Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2

Author information +
History +

Abstract

CsPbX3-based (X = I, Br, Cl) inorganic perovskite solar cells (PSCs) prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability. However, the high trap state density and serious charge recombination between low-temperature processed TiO2 film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs. Here a thin polyethylene oxide (PEO) layer is employed to modify TiO2 film to passivate traps and promote carrier collection. The impacts of PEO layer on microstructure and photoelectric characteristics of TiO2 film and related devices are systematically studied. Characterization results suggest that PEO modification can reduce the surface roughness of TiO2 film, decrease its average surface potential, and passivate trap states. At optimal conditions, the champion efficiency of CsPbI2Br PSCs with PEO-modified TiO2 (PEO-PSCs) has been improved to 11.24% from 9.03% of reference PSCs. Moreover, the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.

Keywords

polyethylene oxide-modified TiO2 film / low-temperature process / CsPbI2Br-based all-inorganic perovskite solar cells / photovoltaic performance

Cite this article

Download citation ▾
Xu Zhao, Naitao Gao, Shengcheng Wu, Shaozhen Li, Sujuan Wu. Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(4): 786‒794 https://doi.org/10.1007/s12613-023-2742-2

References

[[1]]
L. Chu, S.B. Zhai, W. Ahmad, et al., High-performance large-area perovskite photovoltaic modules, Nano Res. Energy, 1(2022), No. 2, art. No. 9120024.
[[2]]
Z.T. Wang, Q.W. Tian, H. Zhang, et al., Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells, Angew. Chem. Int. Ed., 62(2023), No. 30, art. No. e202305815.
[[3]]
Zhang SY, He J, Guo X, et al.. Crystallization dynamic control of perovskite films with suppressed phase transition and reduced defects for highly efficient and stable all-inorganic perovskite solar cells. ACS Mater. Lett., 2023, 5(6): 1497,
CrossRef Google scholar
[[4]]
Eperon GE, Paterno GM, Sutton RJ, et al.. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A, 2015, 3(39): 19688,
CrossRef Google scholar
[[5]]
J.X. Zhang, G.Z. Zhang, P.Y. Su, et al., 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells, Angew. Chem. Int. Ed., 62(2023), No. 25, art. No. e202303486.
[[6]]
Q.S. Zeng, X.Y. Zhang, C.M. Liu, et al., Inorganic CsPbI2Br perovskite solar cells: The progress and perspective, Sol. RRL, 3(2019), No. 1, art. No. 1800239.
[[7]]
Dong HP, Li Y, Wang SF, et al.. Interface engineering of perovskite solar cells with PEO for improved performance. J. Mater. Chem A, 2015, 3(18): 9999,
CrossRef Google scholar
[[8]]
L. Yan, Q.F. Xue, M.Y. Liu, et al., Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%, Adv. Mater., 30(2018), No. 33, art. No. 1802509.
[[9]]
S.M. Yang, H. Zhao, Y. Han, C.Y. Duan, Z.K. Liu, and S.F. Liu, Europium and acetate co-doping strategy for developing stable and efficient CsPbI2Br perovskite solar cells, Small, 15(2019), No. 46, art. No. 1904387.
[[10]]
E.C. Shen, J.D. Chen, Y. Tian, et al., Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells, Adv. Sci., 7(2020), No. 1, art. No. 1901952.
[[11]]
Q.Y. Guo, J.L. Duan, J.S. Zhang, et al., Universal dynamic liquid interface for healing perovskite solar cells, Adv. Mater., 34(2022), No. 26, art. No. 2202301.
[[12]]
Zhou HP, Chen Q, Li G, et al.. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542,
CrossRef Pubmed Google scholar
[[13]]
He JJ, Ge B, Hou Y, Yang S, Yang HG. A dendrite-structured RbX (X=Br, I) interlayer for CsPbI2Br perovskite solar cells with over 15 % stabilized efficiency. ChemSusChem, 2020, 13(20): 5443,
CrossRef Pubmed Google scholar
[[14]]
Zhao AR, Han Y, Che YH, et al.. High-quality borophene quantum dot realization and their application in a photovoltaic device. J. Mater. Chem. A, 2021, 9(42): 24036,
CrossRef Google scholar
[[15]]
Wang WR, Lin Y, Zhang GZ, et al.. Modification of compact TiO2 layer by TiCl4–TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbI2Br perovskite solar cells. J. Energy Chem., 2021, 63: 442,
CrossRef Google scholar
[[16]]
Duan CH, Wen QY, Fan Y, Li J, Liu ZD, Yan KY. Improving the stability and scalability of all-inorganic inverted CsPbI2Br perovskite solar cell. J. Energy Chem., 2022, 68: 176,
CrossRef Google scholar
[[17]]
Y. Jing, X. Liu, Y. Xu, et al., Amorphous antimony sulfide nanoparticles construct multi-contact electron transport layers for efficient carbon-based all-inorganic CsPbI2Br perovskite solar cells, Chem. Eng. J., 455(2023), art. No. 140871.
[[18]]
S. You, H. Wang, S.Q. Bi, et al., A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells, Adv. Mater., 30(2018), No. 22, art. No. 1706924.
[[19]]
Tan J, Dou J, Duan JL, Zhao YY, He BL, Tang QW. A trifunctional polyethylene oxide buffer layer for stable and efficient all-inorganic CsPbBr3 perovskite solar cells. Dalton Trans., 2023, 52(13): 4038,
CrossRef Pubmed Google scholar
[[20]]
Tian K, Lu Y, Liu R, Loh XJ, Young DJ. Low-threshold amplified spontaneous emission from air-stable CsPb-Br3 perovskite films containing trace amounts of polyethylene oxide. ChemPlusChem, 2021, 86(11): 1537,
CrossRef Pubmed Google scholar
[[21]]
Z. Uddin, J.H. Ran, E. Stathatos, and B. Yang, Improving thermal stability of perovskite solar cells by thermoplastic additive engineering, Energies, 16(2023), No. 9, art. No. 3621.
[[22]]
J.J. Yang, X. Yu, X.B. Lu, et al., Bifunctional passivation for efficient and stable low-temperature processed all-inorganic CsPbIBr2 perovskite solar cells, Surf. Interfaces, 32(2022), art. No. 102097.
[[23]]
P.L. Qin, T. Wu, Z.C. Wang, et al., Vitrification transformation of poly(ethylene oxide) activating interface passivation for high-efficiency perovskite solar cells, Sol. RRL, 3(2019), No. 10, art. No. 1900134.
[[24]]
Arora N, Dar MI, Hinderhofer A, et al.. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768,
CrossRef Pubmed Google scholar
[[25]]
Chen Q, Zhou HP, Hong ZR, et al.. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 2014, 136(2): 622,
CrossRef Pubmed Google scholar
[[26]]
Nejand BA, Ahmadi V, Gharibzadeh S, Shahverdi HR. Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells. ChemSusChem, 2016, 9(3): 302,
CrossRef Pubmed Google scholar
[[27]]
Aftab A, Ahmad MI. A review of stability and progress in tin halide perovskite solar cell. Sol. Energy, 2021, 216: 26,
CrossRef Google scholar
[[28]]
Snaith HJ, Abate A, Ball JM, et al.. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett., 2014, 5(9): 1511,
CrossRef Pubmed Google scholar
[[29]]
J.Y. Li, B.Y. Huang, E.N. Esfahani, et al., Touching is believing: Interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy, NPJ Quantum Mater., 2(2017), art. No. 56.
[[30]]
B.P. Nguyen, G.Y. Kim, W. Jo, B.J. Kim, and H.S. Jung, Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1−xBrx)3 perovskite solar cells, Nanotechnology, 28(2017), No. 31, art. No. 315402.
[[31]]
Heo JH, You MS, Chang MH, et al.. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy, 2015, 15: 530,
CrossRef Google scholar
[[32]]
Boopathi KM, Mohan R, Huang TY, et al.. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A, 2016, 4(5): 1591,
CrossRef Google scholar
[[33]]
Liu YF, Wu ZL, Dou YX, et al.. Formamidinium-based perovskite solar cells with enhanced moisture stability and performance via confined pressure annealing. J. Phys. Chem. C, 2020, 124(23): 12249,
CrossRef Google scholar
[[34]]
Y. Dong, W.J. Shen, W. Dong, et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells, Adv. Energy Mater., 12(2022), No. 20, art. No. 2200417.
[[35]]
Gao YX, Dong YN, Huang KQ, et al.. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing. ACS Photonics, 2018, 5(10): 4104,
CrossRef Google scholar
[[36]]
J.R. Zhang, D.L. Bai, Z.W. Jin, et al., 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability, Adv. Energy Mater., 8(2018), No. 15, art. No. 1703246.
[[37]]
Y. Xu, F.L. Liu, R.S. Li, et al., Mxene regulates the stress of perovskite and improves interface contact for high-efficiency carbon-based all-inorganic solar cells, Chem. Eng. J., 461(2023), art. No. 141895.
[[38]]
Y.W. Duan, K. He, L. Yang, J. Xu, W.J. Zhao, and Z.K. Liu, 24.20%-efficiency MA-free perovskite solar cells enabled by siloxane derivative interface engineering, Small, 18(2022), No. 48, art. No. 2204733.
[[39]]
Zhao YX, Nardes AM, Zhu K. Mesoporous perovskite solar cells: Material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss., 2014, 176: 301,
CrossRef Pubmed Google scholar
[[40]]
Park M, Kim JY, Son HJ, Lee CH, Jang SS, Ko MJ. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 2016, 26: 208,
CrossRef Google scholar
[[41]]
Yu ZH, Chen BL, Liu P, et al.. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv. Funct. Mater., 2016, 26(27): 4866,
CrossRef Google scholar
[[42]]
Lin LY, Yeh MH, Lee CP, Chou CY, Vittal R, Ho KC. Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochim. Acta, 2012, 62: 341,
CrossRef Google scholar
[[43]]
Yang S, Yue WB, Zhu J, Ren Y, Yang XJ. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater., 2013, 23(28): 3570,
CrossRef Google scholar
[[44]]
Mahmud MA, Elumalai NK, Upama MB, et al.. Single vs mixed organic cation for low temperature processed perovskite solar cells. Electrochim. Acta, 2016, 222: 1510,
CrossRef Google scholar
[[45]]
Li XM, Jia PC, Meng FW, et al.. Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells. Int. J. Miner. Metall. Mater., 2023, 30(10): 1965,
CrossRef Google scholar
[[46]]
H.R. Sun, J. Zhang, X.L. Gan, et al., Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells, Adv. Energy Mater., 9(2019), No. 25, art. No. 1900896.
[[47]]
W. Chen, Y.H. Wu, J. Fan, et al., Understanding the doping effect on NiO: Toward high-performance inverted perovskite solar cells, Adv. Energy Mater., 8(2018), 19, art. No. 1703519.
[[48]]
J.J. Tian, Q.F. Xue, X.F. Tang, et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability, Adv. Mater., 31(2019), No. 23, art. No. 1901152.
[[49]]
Azmi R, Oh SH, Jang SY. High-efficiency colloidal quantum dot photovoltaic devices using chemically modified heterojunctions. ACS Energy Lett., 2016, 1(1): 100,
CrossRef Google scholar
[[50]]
Y. Zhou, X. Zhang, X.B. Lu, et al., Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells, Sol. RRL, 3(2019), No. 4, art. No. 1800315.
[[51]]
Duan JL, Zhao YY, He BL, Tang QW. High-purity inorganic perovskite films for solar cells with 9.72 % efficiency. Angew. Chem. Int. Ed, 2018, 57(14): 3787,
CrossRef Google scholar
[[52]]
Zhang M, Gao W, Zhang FJ, et al.. Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy Environ. Sci., 2018, 11(4): 841,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/