Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process
Yufeng Guo, Jinlai Zhang, Shuai Wang, Jianjun Fan, Haokun Li, Feng Chen, Kuo Liu, Lingzhi Yang
Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process. In this study, the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments. Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’ diffusion and phase transformation during the roasting process. The results indicated that limestone decomposed into calcium oxide, and magnetite was oxidized to hematite at the early stage of preheating. With the increase in roasting temperature, the diffusion rate of Fe and Ca was obviously accelerated, while the diffusion rate of Si was relatively slow. The order of magnitude of interdiffusion coefficient of Fe2O3–CaO diffusion couple was 10−10 m2·s−1 at a roasting temperature of 1200°C for 9 h. Ca2Fe2O5 was the initial product in the Fe2O3–CaO–SiO2 diffusion interface, and then Ca2Fe2O5 continued to react with Fe2O3 to form CaFe2O4. With the expansion of the diffusion region, the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO2 into CaFe2O4, which can strengthen the consolidation of fluxed pellets. Furthermore, andradite would be formed around a small part of quartz particles, which is also conducive to the consolidation of fluxed pellets. In addition, the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
fluxed iron ore pellet / limestone / hematite / quartz / diffusion reaction
[[1]] |
|
[[2]] |
B. Hu, P.W. Hu, B. Lu, et al., NOx emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production, Processes, 8(2020), No. 11, art. No. 1470.
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
R.K. Dishwar and O.P. Sinha, Effect of basicity on the activation energy during reduction of highly fluxed iron ore pellets, Fuel, 296(2021), art. No. 120640.
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
/
〈 | 〉 |