Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators
Quan Shi, Jue Tang, Mansheng Chu
Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials, process operation, smelting state, and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently improved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of ±10°C was 92.4%, and that for the chemical heat of hot metal in the error range of ±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience, a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These suggestions were highly accepted by BF operators. Finally, the comprehensive and dynamic model proposed in this work was successfully applied in a practical BF system. It improved the BF temperature level remarkably, increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits.
blast furnace / furnace heat / genetic algorithm / stacking / prediction and feedback
[[1]] |
D. Pan, Z.H. Jiang, Z.P. Chen, W.H. Gui, Y.F. Xie, and C.H. Yang, Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model, Sensors, 18(2018), No. 11, art. No. 3792.
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
Q. Shi, J. Tang, and M.S. Chu, Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy, Steel Res. Int., 95 (2024), art. No. 2300385.
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
J.P. Li, C.C. Hua, and X.P. Guan, Inputs screening of hot metal silicon content model on blast furnace, [in] 2017 Chinese Automation Congress (CAC), Jinan, 2017, p. 3747.
|
[[17]] |
|
[[18]] |
|
[[19]] |
Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197.
|
[[20]] |
K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114.
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
L. Wei, S.S. Yang, F. Zhang, and Q. Bai, A Mathematical model on prediction of hot metal silicon content and temperature using blast furnace hearth thermal state parameters, [in] Metallurgical Research Center 2005 Metallurgical Engineering Science Forum, Beijing, 2005, p. 62.
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
/
〈 | 〉 |