N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production
Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, Shen’gen Zhang
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production
Exclusive responsiveness to ultraviolet light (∼3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO2. We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO2/P-doped porous hollow g-C3N4 nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1%G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of 0.1%G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO2, PCN, and N-TiO2/PCN (TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO2 and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO2, PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4 times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1%G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1%G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
N-doped TiO2 / N-doped graphene quantum dots / P-doped g-C3N4 / porous hollow nanotube / heterojunction / photocatalysis
[[1]] |
S.J. Wang, F.T. He, X.L. Zhao, et al., Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution, Appl. Catal. B: Environ., 257(2019), art. No. 117931.
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
S. Dong, S.H. Chen, F.Y. He, J.C. Li, H. Li, and K.Z. Xu, Construction of a novel N-doped oxygen vacancy-rich TiO2 N-TiO2−X/g-C3N4 S-scheme heterostructure for visible light driven photocatalytic degradation of 2,4-dinitrophenylhydrazine, J. Alloys Compd., 908(2022), art. No. 164586.
|
[[10]] |
L. Yang, X. Bai, J. Shi, X.Y. Du, L. Xu, and P.K. Jin, Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants, Appl. Catal. B: Environ., 256(2019), art. No. 117759.
|
[[11]] |
B. Fang, Z.P. Xing, D.D. Sun, Z.Z. Li, and W. Zhou, Hollow semiconductor photocatalysts for solar energy conversion, Adv. Powder Mater., 1(2022), No. 2, art. No. 100021.
|
[[12]] |
Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, and L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydro-chloride and Cr(VI) coexistence environment, Appl. Catal. B: Environ., 262(2020), art. No. 118308.
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
Y.H. Li, M.L. Gu, T. Shi, et al., Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity, Appl. Catal. B: Environ., 262(2020), art. No. 118281.
|
[[19]] |
Y. Zhang, J.S. Yuan, Y.J. Ding, B.L. Zhang, S.G. Zhang, and B. Liu, Metal-free N-GQDs/P-g-C3N4 photocatalyst with broad-spectrum response: Enhanced exciton dissociation and charge migration for promoting H2 evolution and tetracycline degradation, Sep. Purif. Technol., 304(2023), art. No. 122297.
|
[[20]] |
Y.H. Su, G.L. Liu, C.P. Zeng, Y.B. Lu, H.P. Luo, and R.D. Zhang, Carbon quantum dots-decorated TiO2/g-C3N4 film electrode as a photoanode with improved photoelectrocatalytic performance for 1,4-dioxane degradation, Chemosphere, 251(2020), art. No. 126381.
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
W.J. Wang, Z.T. Zeng, G.M. Zeng, et al., Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light, Chem. Eng. J., 378(2019), art. No. 122132.
|
[[25]] |
Z. Mo, X.W. Zhu, Z.F. Jiang, et al., Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction, Appl. Catal. B: Environ., 256(2019), art. No. 117854.
|
[[26]] |
|
[[27]] |
M.H. Zhang, N. Han, Y.W. Fei, et al., TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater, J. Environ. Manag., 297(2021), art. No. 113311.
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
Y.Y. Jiao, Y.K. Li, J.S. Wang, Z.H. He, and Z.J. Li, Double Z-scheme photocatalyst C3N4 nanotube/N-doped carbon dots/Ni2P with enhanced visible-light photocatalytic activity for hydrogen generation, Appl. Surf. Sci., 534(2020), art. No. 147603.
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
H.Y. Niu, W.J. Zhao, H.Z. Lv, Y.L. Yang, and Y.Q. Cai, Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method, Chem. Eng. J., 411(2021), art. No. 128400.
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
[[44]] |
|
[[45]] |
|
[[46]] |
K.L. Huang, C.H. Li, X.L. Zhang, et al., TiO2 nanorod arrays decorated by nitrogen-doped carbon and g-C3N4 with enhanced photoelectrocatalytic activity, Appl. Surf. Sci., 518(2020), art. No. 146219.
|
[[47]] |
J. Ma, W. Zhou, X. Tan, and T. Yu, Potassium ions intercalated into g-C3N4-modified TiO2 nanobelts for the enhancement of photocatalytic hydrogen evolution activity under visible-light irradiation, Nanotechnology, 29(2018), No. 21, art. No. 215706.
|
[[48]] |
|
[[49]] |
|
[[50]] |
Z.B. Wu, Y.S. Liang, X.Z. Yuan, et al, MXene Ti3C2 derived Z-scheme photocatalyst of graphene layers anchored TiO2/g-C3N4 for visible light photocatalytic degradation of refractory organic pollutants, Chem. Eng. J., 394(2020), art. No. 124921.
|
[[51]] |
Q.H. Li, M. Dong, R. Li, et al., Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers, Carbohydr. Polym., 253(2021), art. No. 117200.
|
[[52]] |
X. Han, L. An, Y. Hu, et al, Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation, Appl. Catal. B: Environ., 265(2020), art. No. 118539.
|
[[53]] |
|
[[54]] |
|
[[55]] |
|
[[56]] |
|
[[57]] |
X.W. Liu, W.Q. Li, R. Hu, et al., Synergistic degradation of acid orange 7 dye by using non-thermal plasma and g-C3N4/TiO2: Performance, degradation pathways and catalytic mechanism, Chemosphere, 249(2020), art. No. 126093.
|
[[58]] |
|
[[59]] |
|
[[60]] |
X.W. Liu, J. Chen, L.F. Yang, et al., 2D/2D g-C3N4/TiO2 with exposed (001) facets Z-Scheme composites accelerating separation of interfacial charge and visible photocatalytic degradation of Rhodamine B, J. Phys. Chem. Solids, 160(2022), art. No. 110339.
|
[[61]] |
|
[[62]] |
|
[[63]] |
L. Zhou, J.R. Feng, B.C. Qiu, et al., Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production, Appl. Catal. B: Environ., 267(2020), art. No. 118396.
|
[[64]] |
C. Yang, X. Liu, J. Liu, et al., Long-lasting photocatalytic activity of trace phosphorus-doped g-C3N4/SMSO and its application in antibacterial ceramics, Ecotoxicol. Environ. Saf., 242(2022), art. No. 113951.
|
[[65]] |
H.J. Liang, M.C. Yu, J.Y. Guo, et al., A novel vacancy-strengthened Z-scheme g-C3N4/Bp/MoS2 composite for superefficient visible-light photocatalytic degradation of ciprofloxacin, Sep. Purif. Technol., 272(2021), art. No. 118891.
|
[[66]] |
M.X. Tan, Y. Ma, C.Y. Yu, et al., Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heeroojunction, Adv. Funct. Mater., 32(2022), No. 14, art. No. 2111740.
|
[[67]] |
Y.T. Yu, W.C. Xu, J.Z. Fang, et al., Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight, Appl. Catal. B: Environ., 268(2020), art. No. 118751.
|
[[68]] |
X.N. Hu, Y. Zhang, B.J. Wang, H.J. Li, and W.B. Dong, Novel g-C3N4/BiOClxI1−x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light, Appl. Catal. B: Environ., 256(2019), art. No. 117789.
|
[[69]] |
Y.Y. Wu, X.T. Chen, J.C. Cao, et al, Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect, Appl. Catal. B: Environ., 303(2022), art. No. 120878.
|
[[70]] |
|
[[71]] |
C.J. Wang, Y.L. Zhao, H. Xu, et al., Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O, Appl. Catal. B: Environ., 263(2020), art. No. 118314.
|
[[72]] |
C. Zhao, Y. Li, H.Y. Chu, et al., Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation, J. Hazard. Mater., 419(2021), art. No. 126466.
|
[[73]] |
Z.F. Hu, D. Shi, G.H. Wang, et al., Carbon dots incorporated in hierarchical macro/mesoporous g-C3N4/TiO2 as an all-solidstate Z-scheme heterojunction for enhancement of photocatalytic H2 evolution under visible light, Appl. Surf. Sci., 601(2022), art. No. 154167.
|
[[74]] |
D.T. Zhou, B.B. Yu, Q.L. Chen, et al., Improved visible light photocatalytic activity on Z-scheme g-C3N4 decorated TiO2 nanotube arrays by a simple impregnation method, Mater. Res. Bull., 124(2020), art. No. 110757.
|
[[75]] |
A. Kumar, M. Khan, J.H. He, and I.M.C. Lo, Visible-light-driven magnetically recyclable terephthalic acid functionalized g-C3N4/TiO2 heterojunction nanophotocatalyst for enhanced degradation of PPCPs, Appl. Catal. B: Environ., 270(2020), art. No. 118898.
|
[[76]] |
X. Hu, X.J. Hu, Q.Q. Peng, et al., Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2, Chem. Eng. J., 380(2020), art. No. 122366.
|
[[77]] |
|
[[78]] |
W.Q. Li, S.Q. Li, Y. Tang, et al., Highly efficient activation of peroxymonosulfate by cobalt sulfide hollow nanospheres for fast ciprofloxacin degradation, J. Hazard. Mater., 389(2020), art. No. 121856.
|
[[79]] |
B.S. Li, S.Y. Liu, C. Lai, et al., Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation, Appl. Catal. B: Environ., 266(2020), art. No. 118650.
|
[[80]] |
Y.Q. Lu, C.S. Ding, J. Guo, et al., Highly efficient photodegradation of ciprofloxacin by dual Z-scheme Bi2MoO6/GQDs/TiO2 heterojunction photocatalysts: Mechanism analysis and pathway exploration, J. Alloys Compd., 924(2022), art. No. 166533.
|
/
〈 | 〉 |