N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production

Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, Shen’gen Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (1) : 165-178. DOI: 10.1007/s12613-023-2678-6
Research Article

N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production

Author information +
History +

Abstract

Exclusive responsiveness to ultraviolet light (∼3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO2. We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO2/P-doped porous hollow g-C3N4 nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1%G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of 0.1%G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO2, PCN, and N-TiO2/PCN (TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO2 and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO2, PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4 times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1%G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1%G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.

Keywords

N-doped TiO2 / N-doped graphene quantum dots / P-doped g-C3N4 / porous hollow nanotube / heterojunction / photocatalysis

Cite this article

Download citation ▾
Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, Shen’gen Zhang. N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(1): 165‒178 https://doi.org/10.1007/s12613-023-2678-6

References

[[1]]
S.J. Wang, F.T. He, X.L. Zhao, et al., Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution, Appl. Catal. B: Environ., 257(2019), art. No. 117931.
[[2]]
Wang HH, Liu WX, Ma J, et al.. Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation. Int. J. Miner. Metall. Mater., 2020, 27(6): 830,
CrossRef Google scholar
[[3]]
Li J, Zhang M, Li QY, Yang JJ. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst. Appl. Surf. Sci., 2017, 391: 184,
CrossRef Google scholar
[[4]]
Jiang XH, Duan YN, Tian Y, et al.. Facile one-pot hydrothermal method to prepare Sn(II) and N co-doped TiO2 photocatalyst for water splitting under visible light irradiation. Rare Met., 2022, 41(2): 406,
CrossRef Google scholar
[[5]]
Chen XF, Wei J, Hou RJ, et al.. Growth of g-C3N4 on mesoporous TiO2 spheres with high photocatalytic activity under visible light irradiation. Appl. Catal. B: Environ., 2016, 188: 342,
CrossRef Google scholar
[[6]]
Nie YC, Yu F, Wang LC, et al.. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: Performance and mechanism. Appl. Catal. B: Environ, 2018, 227: 312,
CrossRef Google scholar
[[7]]
Qin YY, Guo YC, Liang ZQ, et al.. Au nanorods decorated TiO2 nanobelts with enhanced full solar spectrum photocatalytic antibacterial activity and the sterilization file cabinet application. Chin. Chem. Lett., 2021, 32(4): 1523,
CrossRef Google scholar
[[8]]
Xu L, Bai X, Guo LK, Yang SJ, Jin PK, Yang L. Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2−x nanocomposite for the efficient photoreduction of Cr(VI) under visible light. Chem. Eng. J., 2019, 357: 473,
CrossRef Google scholar
[[9]]
S. Dong, S.H. Chen, F.Y. He, J.C. Li, H. Li, and K.Z. Xu, Construction of a novel N-doped oxygen vacancy-rich TiO2 N-TiO2−X/g-C3N4 S-scheme heterostructure for visible light driven photocatalytic degradation of 2,4-dinitrophenylhydrazine, J. Alloys Compd., 908(2022), art. No. 164586.
[[10]]
L. Yang, X. Bai, J. Shi, X.Y. Du, L. Xu, and P.K. Jin, Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants, Appl. Catal. B: Environ., 256(2019), art. No. 117759.
[[11]]
B. Fang, Z.P. Xing, D.D. Sun, Z.Z. Li, and W. Zhou, Hollow semiconductor photocatalysts for solar energy conversion, Adv. Powder Mater., 1(2022), No. 2, art. No. 100021.
[[12]]
Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, and L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydro-chloride and Cr(VI) coexistence environment, Appl. Catal. B: Environ., 262(2020), art. No. 118308.
[[13]]
Zhang LQ, He X, Xu XW, et al.. Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl. Catal. B: Environ., 2017, 203: 1,
CrossRef Google scholar
[[14]]
Zhong RY, Zhang ZS, Yi HQ, et al.. Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B: Environ., 2018, 237: 1130,
CrossRef Google scholar
[[15]]
Zhang Y, Yuan JS, Zhao L, et al.. Boosting exciton dissociation and charge transfer in P-doped 2D porous g-C3N4 for enhanced H2 production and molecular oxygen activation. Ceram. Int., 2022, 48(3): 4031,
CrossRef Google scholar
[[16]]
Deng YC, Tang L, Zeng GM, et al.. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism. Appl. Catal. B: Environ., 2017, 203: 343,
CrossRef Google scholar
[[17]]
Tian N, Xiao K, Zhang YH, et al.. Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction. Appl. Catal. B: Environ., 2019, 253: 196,
CrossRef Google scholar
[[18]]
Y.H. Li, M.L. Gu, T. Shi, et al., Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity, Appl. Catal. B: Environ., 262(2020), art. No. 118281.
[[19]]
Y. Zhang, J.S. Yuan, Y.J. Ding, B.L. Zhang, S.G. Zhang, and B. Liu, Metal-free N-GQDs/P-g-C3N4 photocatalyst with broad-spectrum response: Enhanced exciton dissociation and charge migration for promoting H2 evolution and tetracycline degradation, Sep. Purif. Technol., 304(2023), art. No. 122297.
[[20]]
Y.H. Su, G.L. Liu, C.P. Zeng, Y.B. Lu, H.P. Luo, and R.D. Zhang, Carbon quantum dots-decorated TiO2/g-C3N4 film electrode as a photoanode with improved photoelectrocatalytic performance for 1,4-dioxane degradation, Chemosphere, 251(2020), art. No. 126381.
[[21]]
Chen T, Zhong L, Yang Z, et al.. Enhanced visible-light photocatalytic activity of g-C3N4/nitrogen-doped graphene quantum dots/TiO2 ternary heterojunctions for ciprofloxacin degradation with narrow band gap and high charge carrier mobility. Chem. Res. Chin. Univ., 2020, 36(6): 1083,
CrossRef Google scholar
[[22]]
Deng YC, Tang L, Feng CY, et al.. Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecor-ated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: Full-spectrum response ability and mechanism insight. ACS Appl. Mater. Interfaces, 2017, 9(49): 42816,
CrossRef Google scholar
[[23]]
Zhang Y, Yuan JS, Ding YJ, Liu B, Zhao L, Zhang SG. Research progress on g-C3N4-based photocatalysts for organic pollutants degradation in wastewater: From exciton and carrier perspectives. Ceram. Int., 2021, 47(22): 31005,
CrossRef Google scholar
[[24]]
W.J. Wang, Z.T. Zeng, G.M. Zeng, et al., Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light, Chem. Eng. J., 378(2019), art. No. 122132.
[[25]]
Z. Mo, X.W. Zhu, Z.F. Jiang, et al., Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction, Appl. Catal. B: Environ., 256(2019), art. No. 117854.
[[26]]
Fajrina N, Tahir M. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture. Appl. Surf. Sci., 2019, 471: 1053,
CrossRef Google scholar
[[27]]
M.H. Zhang, N. Han, Y.W. Fei, et al., TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater, J. Environ. Manag., 297(2021), art. No. 113311.
[[28]]
Lu Z, Zeng L, Song WL, Qin ZY, Zeng DW, Xie CS. In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal. B: Environ., 2017, 202: 489,
CrossRef Google scholar
[[29]]
Chen L, Zhao XL, Duan XG, et al.. Graphitic carbon nitride microtubes for efficient photocatalytic overall water splitting: The morphology derived electrical field enhancement. ACS Sustainable Chem. Eng., 2020, 8(38): 14386,
CrossRef Google scholar
[[30]]
Guo SE, Deng ZP, Li MX, et al.. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed, 2016, 55(5): 1830,
CrossRef Google scholar
[[31]]
Y.Y. Jiao, Y.K. Li, J.S. Wang, Z.H. He, and Z.J. Li, Double Z-scheme photocatalyst C3N4 nanotube/N-doped carbon dots/Ni2P with enhanced visible-light photocatalytic activity for hydrogen generation, Appl. Surf. Sci., 534(2020), art. No. 147603.
[[32]]
Zhang GH, Zhang TY, Li B, et al.. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method. Appl. Surf. Sci., 2018, 433: 963,
CrossRef Google scholar
[[33]]
Jiang GD, Geng K, Wu Y, Han YH, Shen XD. High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation. Appl. Catal. B: Environ., 2018, 227: 366,
CrossRef Google scholar
[[34]]
Jiang GM, Cao JW, Chen M, Zhang XM, Dong F. Photocatalytic NO oxidation on N-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway. Appl. Surf. Sci., 2018, 458: 77,
CrossRef Google scholar
[[35]]
Zhao Y, Xu SP, Sun X, Xu X, Gao BY. Unique barlike sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study. Appl. Surf. Sci., 2018, 436: 873,
CrossRef Google scholar
[[36]]
H.Y. Niu, W.J. Zhao, H.Z. Lv, Y.L. Yang, and Y.Q. Cai, Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method, Chem. Eng. J., 411(2021), art. No. 128400.
[[37]]
Wei K, Li KX, Yan LS, et al.. One-step fabrication of g-C3N4 anooseeets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems. Appl. Catal. B: Environ., 2018, 222: 88,
CrossRef Google scholar
[[38]]
Jiang XH, Xing QJ, Luo XB, et al.. Simultaneous photore-duction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B: Environ., 2018, 228: 29,
CrossRef Google scholar
[[39]]
Huang MN, Yu JH, Hu Q, et al.. Preparation and enhanced photocatalytic activity of carbon nitride/titania (001 vs 101 facets)/reduced graphene oxide (g-C3N4/TiO2/rGO) hybrids under visible light. Appl. Surf. Sci., 2016, 389: 1084,
CrossRef Google scholar
[[40]]
Tan YG, Shu Z, Zhou J, Li TT, Wang WB, Zhao ZL. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl. Catal. B: Environ., 2018, 230: 260,
CrossRef Google scholar
[[41]]
Wang XQ, Wang F, Bo C, et al.. Promotion of phenol photo-decomposition and the corresponding decomposition mechanism over g-C3N4/TiO2 nanocomposites. Appl. Surf. Sci., 2018, 453: 320,
CrossRef Google scholar
[[42]]
Yang D, Zhao XY, Chen Y, et al.. Synthesis of g-C3N4 nanosheet/TiO2 heterojunctions inspired by bioadhesion and biomineralization mechanism. Ind. Eng. Chem. Res., 2019, 58(14): 5516,
CrossRef Google scholar
[[43]]
Li FX, Xiao XD, Zhao C, et al.. TiO2-on-C3N4 double-shell microtubes: nn-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci., 2020, 572: 22,
CrossRef Google scholar
[[44]]
Yin YY, Liu Q, Jiang D, et al.. Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrication of BiOBr nanohybrids with enhanced visible-light photoactivity and photostability. Carbon, 2016, 96: 1157,
CrossRef Google scholar
[[45]]
Chi LN, Qian YJ, Guo JQ, Wang XZ, Arandiyan H, Jiang Z. Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning. Catal. Today, 2019, 335: 527,
CrossRef Google scholar
[[46]]
K.L. Huang, C.H. Li, X.L. Zhang, et al., TiO2 nanorod arrays decorated by nitrogen-doped carbon and g-C3N4 with enhanced photoelectrocatalytic activity, Appl. Surf. Sci., 518(2020), art. No. 146219.
[[47]]
J. Ma, W. Zhou, X. Tan, and T. Yu, Potassium ions intercalated into g-C3N4-modified TiO2 nanobelts for the enhancement of photocatalytic hydrogen evolution activity under visible-light irradiation, Nanotechnology, 29(2018), No. 21, art. No. 215706.
[[48]]
Li CX, Lou ZR, Yang YC, et al.. Hollowsphere nanohetero-junction of g-C3N4@TiO2 with high visible light photocatalytic property. Langmuir, 2019, 35(3): 779,
CrossRef Google scholar
[[49]]
Ma J, Tan X, Yu T, Li XL. Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive{001}TiO2 crystal facets and its visible-light photocatalytic activity. Int. J. Hydrog. Energy, 2016, 41(6): 3877,
CrossRef Google scholar
[[50]]
Z.B. Wu, Y.S. Liang, X.Z. Yuan, et al, MXene Ti3C2 derived Z-scheme photocatalyst of graphene layers anchored TiO2/g-C3N4 for visible light photocatalytic degradation of refractory organic pollutants, Chem. Eng. J., 394(2020), art. No. 124921.
[[51]]
Q.H. Li, M. Dong, R. Li, et al., Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers, Carbohydr. Polym., 253(2021), art. No. 117200.
[[52]]
X. Han, L. An, Y. Hu, et al, Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation, Appl. Catal. B: Environ., 265(2020), art. No. 118539.
[[53]]
Pan JQ, Dong ZJ, Wang BB, et al.. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl. Catal. B: Environ., 2019, 242: 92,
CrossRef Google scholar
[[54]]
Zhou B, Hong HT, Zhang HF, Yu SS, Tian HW. Heterostructured Ag/g-C3N4/TiO2 with enhanced visible light photocatalytic performances. J. Chem. Technol. Biotechnol., 2019, 94(12): 3806,
CrossRef Google scholar
[[55]]
Zou YJ, Shi JW, Ma DD, Fan ZY, Niu CM, Wang LZ. Fabrication of g-C3N4/Au/C-TiO2 hollow structures as visible-light-driven Z-scheme photocatalysts with enhanced photocatalytic H2 evolution. ChemCatChem, 2017, 9(19): 3752,
CrossRef Google scholar
[[56]]
Hu LM, Yan JT, Wang CL, Chai B, Li JF. Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chin. J. Catal., 2019, 40(3): 458,
CrossRef Google scholar
[[57]]
X.W. Liu, W.Q. Li, R. Hu, et al., Synergistic degradation of acid orange 7 dye by using non-thermal plasma and g-C3N4/TiO2: Performance, degradation pathways and catalytic mechanism, Chemosphere, 249(2020), art. No. 126093.
[[58]]
Liang D, Huang YL, Wu F, et al.. In situ synthesis of g-C3N4/TiO2 with{001}and{101}facets coexposed for water remediation. Appl. Surf. Sci., 2019, 487: 322,
CrossRef Google scholar
[[59]]
Wang XJ, Yang WY, Li FT, Xue YB, Liu RH, Hao YJ. In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind. Eng. Chem. Res., 2013, 52(48): 17140,
CrossRef Google scholar
[[60]]
X.W. Liu, J. Chen, L.F. Yang, et al., 2D/2D g-C3N4/TiO2 with exposed (001) facets Z-Scheme composites accelerating separation of interfacial charge and visible photocatalytic degradation of Rhodamine B, J. Phys. Chem. Solids, 160(2022), art. No. 110339.
[[61]]
Zhou S, Liu Y, Li JM, et al.. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal. B: Environ., 2014, 158–159: 20,
CrossRef Google scholar
[[62]]
Sathish M, Viswanathan B, Viswanath RP, Gopinath CS. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater., 2005, 17(25): 6349,
CrossRef Google scholar
[[63]]
L. Zhou, J.R. Feng, B.C. Qiu, et al., Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production, Appl. Catal. B: Environ., 267(2020), art. No. 118396.
[[64]]
C. Yang, X. Liu, J. Liu, et al., Long-lasting photocatalytic activity of trace phosphorus-doped g-C3N4/SMSO and its application in antibacterial ceramics, Ecotoxicol. Environ. Saf., 242(2022), art. No. 113951.
[[65]]
H.J. Liang, M.C. Yu, J.Y. Guo, et al., A novel vacancy-strengthened Z-scheme g-C3N4/Bp/MoS2 composite for superefficient visible-light photocatalytic degradation of ciprofloxacin, Sep. Purif. Technol., 272(2021), art. No. 118891.
[[66]]
M.X. Tan, Y. Ma, C.Y. Yu, et al., Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heeroojunction, Adv. Funct. Mater., 32(2022), No. 14, art. No. 2111740.
[[67]]
Y.T. Yu, W.C. Xu, J.Z. Fang, et al., Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight, Appl. Catal. B: Environ., 268(2020), art. No. 118751.
[[68]]
X.N. Hu, Y. Zhang, B.J. Wang, H.J. Li, and W.B. Dong, Novel g-C3N4/BiOClxI1−x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light, Appl. Catal. B: Environ., 256(2019), art. No. 117789.
[[69]]
Y.Y. Wu, X.T. Chen, J.C. Cao, et al, Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect, Appl. Catal. B: Environ., 303(2022), art. No. 120878.
[[70]]
Yuan JS, Zhang Y, Zhang XY, Zhao L, Shen HL, Zhang SG. Template-free synthesis of core-shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment. Int. J. Miner. Metall. Mater., 2023, 30(1): 177,
CrossRef Google scholar
[[71]]
C.J. Wang, Y.L. Zhao, H. Xu, et al., Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O, Appl. Catal. B: Environ., 263(2020), art. No. 118314.
[[72]]
C. Zhao, Y. Li, H.Y. Chu, et al., Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation, J. Hazard. Mater., 419(2021), art. No. 126466.
[[73]]
Z.F. Hu, D. Shi, G.H. Wang, et al., Carbon dots incorporated in hierarchical macro/mesoporous g-C3N4/TiO2 as an all-solidstate Z-scheme heterojunction for enhancement of photocatalytic H2 evolution under visible light, Appl. Surf. Sci., 601(2022), art. No. 154167.
[[74]]
D.T. Zhou, B.B. Yu, Q.L. Chen, et al., Improved visible light photocatalytic activity on Z-scheme g-C3N4 decorated TiO2 nanotube arrays by a simple impregnation method, Mater. Res. Bull., 124(2020), art. No. 110757.
[[75]]
A. Kumar, M. Khan, J.H. He, and I.M.C. Lo, Visible-light-driven magnetically recyclable terephthalic acid functionalized g-C3N4/TiO2 heterojunction nanophotocatalyst for enhanced degradation of PPCPs, Appl. Catal. B: Environ., 270(2020), art. No. 118898.
[[76]]
X. Hu, X.J. Hu, Q.Q. Peng, et al., Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2, Chem. Eng. J., 380(2020), art. No. 122366.
[[77]]
Lee DE, Moru S, Jo WK, Tonda S. Porous g-C3N4-en-capsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals. J. Mater. Sci. Technol., 2021, 82: 21,
CrossRef Google scholar
[[78]]
W.Q. Li, S.Q. Li, Y. Tang, et al., Highly efficient activation of peroxymonosulfate by cobalt sulfide hollow nanospheres for fast ciprofloxacin degradation, J. Hazard. Mater., 389(2020), art. No. 121856.
[[79]]
B.S. Li, S.Y. Liu, C. Lai, et al., Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation, Appl. Catal. B: Environ., 266(2020), art. No. 118650.
[[80]]
Y.Q. Lu, C.S. Ding, J. Guo, et al., Highly efficient photodegradation of ciprofloxacin by dual Z-scheme Bi2MoO6/GQDs/TiO2 heterojunction photocatalysts: Mechanism analysis and pathway exploration, J. Alloys Compd., 924(2022), art. No. 166533.

Accesses

Citations

Detail

Sections
Recommended

/