Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite-galena separation
Qiancheng Zhang, Limin Zhang, Feng Jiang, Honghu Tang, Li Wang, Wei Sun
Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite-galena separation
The efficient separation of chalcopyrite (CuFeS2) and galena (PbS) is essential for optimal resource utilization. However, finding a selective depressant that is environmentally friendly and cost effective remains a challenge. Through various techniques, such as microflotation tests, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) observation, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy measurements, this study explored the use of ferric ions (Fe3+) as a selective depressant for galena. The results of flotation tests revealed the impressive selective inhibition capabilities of Fe3+ when used alone. Surface analysis showed that Fe3+ significantly reduced the adsorption of isopropyl ethyl thionocarbamate (IPETC) on the galena surface while having a minimal impact on chalcopyrite. Further analysis using SEM, XPS, and Raman spectra revealed that Fe3+ can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface, effectively depressing IPETC adsorption and increasing surface hydrophilicity. These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.
galena / chalcopyrite / ferric ions / flotation separation / surface oxidation
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
X.M. Qiu, H.Y. Yang, G.B. Chen, S.P. Zhong, C.K. Cai, and B.B. Lan, Inhibited mechanism of carboxymethyl cellulose as a galena depressant in chalcopyrite and galena separation flotation, Miner. Eng., 150(2020), art. No. 106273.
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
B. Feng, X.K. Jiao, H.H. Wang, J.X. Peng, and G. Yang, Improving the separation of chalcopyrite and galena by surface oxidation using hydroxyethyl cellulose as depressant, Miner. Eng., 160(2021), art. No. 106657.
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
Y.L. Botero, A. Canales-Mahuzier, R. Serna-Guerrero, A. López-Valdivieso, M. Benzaazoua, and L.A. Cisternas, Physical-chemical study of IPETC and PAX collector’s adsorption on covellite surface, Appl. Surf. Sci., 602(2022), art. No. 154232.
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
H.Y. Xie, Y.L. Jin, P. Zhang, et al., Surface modification mechanism of galena with H2SO4 and its effect on flotation separation performance, Appl. Surf. Sci., 579(2022), art. No. 152129.
|
[[36]] |
M.F. Liu, C.Y. Zhang, B. Hu, et al., Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate, Appl. Surf. Sci., 507(2020), art. No. 145042.
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
[[44]] |
P.X. Li, G. Zhang, W.J. Zhao, G. Han, and Q.C. Feng, Interaction mechanism of Fe3+ with smithsonite surfaces and its response to flotation performance, Sep. Purif. Technol., 291(2022), art. No. 121001.
|
/
〈 | 〉 |