Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries

Jiabing Miao, Yingxiao Du, Ruotong Li, Zekun Zhang, Ningning Zhao, Lei Dai, Ling Wang, Zhangxing He

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (1) : 33-47. DOI: 10.1007/s12613-023-2665-y
Invited Review

Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries

Author information +
History +

Abstract

Zinc-ion batteries (ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides, transition metal sulfides, MXene (two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.

Keywords

zinc ion batteries / anode / zinc metal-free anode / recent advances / perspectives

Cite this article

Download citation ▾
Jiabing Miao, Yingxiao Du, Ruotong Li, Zekun Zhang, Ningning Zhao, Lei Dai, Ling Wang, Zhangxing He. Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(1): 33‒47 https://doi.org/10.1007/s12613-023-2665-y

References

[[1]]
Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334(6058): 928,
CrossRef Google scholar
[[2]]
Winter M, Brodd RJ. What are batteries, fuel cells, and su-percapacitors?. Chem. Rev., 2004, 104(10): 4245,
CrossRef Google scholar
[[3]]
Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem., 2015, 7(1): 19,
CrossRef Google scholar
[[4]]
Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22(3): 587,
CrossRef Google scholar
[[5]]
Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359,
CrossRef Google scholar
[[6]]
X. Guo, J. Zhou, C.L. Bai, X.K. Li, G.Z. Fang, and S.Q. Liang, Zn/MnO2 battery chemistry with dissolution-deposition mechanism, Mater. Today Energy, 16(2020), art. No. 100396.
[[7]]
Wen RY, Gao ZH, Luo L, et al.. Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance. Nanocomposites, 2022, 8(1): 64,
CrossRef Google scholar
[[8]]
Chao DL, Zhou WH, Ye C, et al.. An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed., 2019, 58(23): 7823,
CrossRef Google scholar
[[9]]
Wang F, Borodin O, Gao T, et al.. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater., 2018, 17(6): 543,
CrossRef Google scholar
[[10]]
Song Y, Ruan PC, Mao CW, et al.. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano Micro Lett., 2022, 14(1): 1,
CrossRef Google scholar
[[11]]
Qin HG, Chen LL, Wang LM, Chen X, Yang ZH. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta, 2019, 306: 307,
CrossRef Google scholar
[[12]]
M.Y. Yan, P. He, Y. Chen, et al., Water-lubricated intercalation in V2O5nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30(2018), No. 1, art. No. 1703725.
[[13]]
Zhang N, Chen XY, Yu M, Niu ZQ, Cheng FY, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev., 2020, 49(13): 4203,
CrossRef Google scholar
[[14]]
K.Y. Zhu, T. Wu, and K. Huang, NaCa0.6V6O1.6·3H2O as an ultra-stable cathode for Zn-ion batteries: The roles of pre-inserted dual-cations and structural water in V3O8 layer, Adv. Energy Mater., 9(2019), No. 38, art. No. 1901968.
[[15]]
L. Cheng, J.W. Chen, Y. Yan, et al., Metal organic frameworks derived active functional groups decorated manganese monoxide for aqueous zinc ion battery, Chem. Phys. Lett., 778(2021), art. No. 138772.
[[16]]
S.Y. Li, D.X. Yu, L.N. Liu, et al., In-situ electrochemical induced artificial solid electrolyte interphase for MnO@C nano-composite enabling long-lived aqueous zinc-ion batteries, Chem. Eng. J., 430(2022), art. No. 132673.
[[17]]
W.J. Li, X. Gao, Z.Y. Chen, et al., Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery, Chem. Eng. J., 402(2020), art. No. 125509.
[[18]]
T.S. Zhang, Y. Tang, G.Z. Fang, et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte, Adv. Funct. Mater., 30(2020), No. 30, art. No. 2002711.
[[19]]
X.H. Chen, P.C. Ruan, X.W. Wu, S.Q. Liang, and J.A. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries, Acta Phys. Chim. Sin., 38(2022), No. 12, art. No. 2111003.
[[20]]
Selvakumaran D, Pan AQ, Liang SQ, Cao GZ. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A, 2019, 7(31): 18209,
CrossRef Google scholar
[[21]]
Zampardi G, La Mantia F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Curr. Opin. Electrochem., 2020, 21: 84,
CrossRef Google scholar
[[22]]
Zeng YX, Lu XF, Zhang SL, Luan DY, Li S, Lou XW. Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed, 2021, 60(41): 22189,
CrossRef Google scholar
[[23]]
L.N. Chen, Q.Y. An, and L.Q. Mai, Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries, Adv. Mater. Interfaces, 6(2019), No. 17, art. No. 1900387.
[[24]]
Geng YF, Pan L, Peng ZY, et al.. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater., 2022, 51: 733,
CrossRef Google scholar
[[25]]
Li B, Zhang XT, Wang TT, et al.. Interfacial engineering strategy for high-performance Zn metal anodes. Nano Micro Lett., 2021, 14(1): 1,
CrossRef Google scholar
[[26]]
Wang TT, Li CP, Xie XS, et al.. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano, 2020, 14(12): 16321,
CrossRef Google scholar
[[27]]
Zhang Q, Luan JY, Tang YG, Ji XB, Wang HY. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed., 2020, 59(32): 13180,
CrossRef Google scholar
[[28]]
H.M. Yu, Y.J. Chen, H. Wang, et al., Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries, Nano Energy, 99(2022), art. No. 107426.
[[29]]
Hong L, Wu XM, Wang LY, et al.. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano, 2022, 16(4): 6906,
CrossRef Google scholar
[[30]]
Du WC, Ang EH, Yang Y, Zhang YF, Ye MH, Li CC. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci., 2020, 13(10): 3330,
CrossRef Google scholar
[[31]]
N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. e2200597.
[[32]]
Li RT, Du YX, Li YH, et al.. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett., 2023, 8(1): 457,
CrossRef Google scholar
[[33]]
B.T. Liu, S.J. Wang, Z.L. Wang, H. Lei, Z.T. Chen, and W.J. Mai, Novel 3D nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries, Small, 16(2020), No. 22, art. No. e2001323.
[[34]]
Liu C, Luo Z, Deng WT, et al.. Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett., 2021, 6(2): 675,
CrossRef Google scholar
[[35]]
Zhang Q, Luan JY, Fu L, et al.. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented poly-acrylamide electrolyte additive. Angew. Chem. Int. Ed., 2019, 58(44): 15841,
CrossRef Google scholar
[[36]]
Zhang YM, Howe JD, Ben-Yoseph S, Wu YT, Liu N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett., 2021, 6(2): 404,
CrossRef Google scholar
[[37]]
Sun P, Ma L, Zhou WH, et al.. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed., 2021, 60(33): 18247,
CrossRef Google scholar
[[38]]
H.J. Ji, Z.Q. Han, Y.H. Lin, et al., Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive, J. Alloys Compd., 914(2022), art. No. 165231.
[[39]]
C.P. Li, X.S. Xie, H. Liu, et al., Integrated’ all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries, Natl. Sci. Rev., 9(2021), No. 3, art. No. nwab177.
[[40]]
Xing ZY, Wang S, Yu AP, Chen ZW. Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium. Nano Energy, 2018, 50: 229,
CrossRef Google scholar
[[41]]
Kaveevivitchai W, Manthiram A. High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries. J. Mater. Chem. A, 2016, 4(48): 18737,
CrossRef Google scholar
[[42]]
Chae MS, Heo JW, Lim SC, Hong ST. Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes. Inorg. Chem., 2016, 55(7): 3294,
CrossRef Google scholar
[[43]]
W. Li, K.L. Wang, S.J. Cheng, and K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900993.
[[44]]
Yan LJ, Zeng XM, Li ZH, et al.. An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Mater. Today Energy, 2019, 13: 323,
CrossRef Google scholar
[[45]]
Y. Yang, J.F. Xiao, J.Y. Cai, et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism, Adv. Funct. Mater., 31(2021), No. 3, art. No. 2005092.
[[46]]
W. Li, Y.S. Ma, P. Li, X.Y. Jing, K. Jiang, and D.H. Wang, Electrochemically activated Cu2–xTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries, Adv. Energy Mater., 11(2021), No. 42, art. No. 2102607.
[[47]]
J. Cao, D.D. Zhang, Y.L. Yue, et al., Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries, Chem. Eng. J., 426(2021), art. No. 131893.
[[48]]
B. Wang, J.P. Yan, Y.F. Zhang, M.H. Ye, Y. Yang, and C.C. Li, In situ carbon insertion in laminated molybdenum dioxide by interlayer engineering toward ultrastable “rocking-chair” zinc-ion batteries, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2102827.
[[49]]
Zhang Q, Duan TF, Xiao MJ, et al.. BiOI nanopaper As a high-capacity, long-life and insertion-type anode for a flexible quasi-solid-state Zn-ion battery. ACS Appl. Mater. Interfaces, 2022, 14(22): 25516,
CrossRef Google scholar
[[50]]
X. Wang, Y.M. Wang, Y.P. Jiang, et al., Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries, Adv. Funct. Mater., 31(2021), No. 35, art. No. 2103210.
[[51]]
Xiong T, Zhang YX, Wang YM, Lee WSV, Xue JM. Hexagonal MoO3 as a zinc intercalation anode towards zinc metal-free zinc-ion batteries. J. Mater. Chem. A, 2020, 8(18): 9006,
CrossRef Google scholar
[[52]]
Zhu YP, Cui Y, Alshareef HN. An anode-free Zn-MnO2 battery. Nano Lett., 2021, 21(3): 1446,
CrossRef Google scholar
[[53]]
Y.Q. Jiang, K. Ma, M.L. Sun, Y.Y. Li, and J.P. Liu, All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering, Energy Environ. Mater., 6(2023), No. 2, art. No. e12357.
[[54]]
K. Mao, J.J. Shi, Q.X. Zhang, Y et al., High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for de-gradable micro Zn-ion hybrid supercapacitors, Nano Energy, 103(2022), art. No. 107791.
[[55]]
Hao JN, Li XL, Zeng XH, Li D, Mao JF, Guo ZP. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci., 2020, 13(11): 3917,
CrossRef Google scholar
[[56]]
H. Jia, Z.Q. Wang, B. Tawiah, et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70(2020), art. No. 104523.
[[57]]
Lu WJ, Xie CX, Zhang HM, Li XF. Inhibition of zinc dendrite growth in zinc-based batteries. ChemSusChem, 2018, 11(23): 3996,
CrossRef Google scholar
[[58]]
Li CP, Xie XS, Liang SQ, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater., 2020, 3(2): 146,
CrossRef Google scholar
[[59]]
Z.Y. Xing, Y.Y. Sun, X.S. Xie, et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes, Angew. Chem. Int. Ed., 62(2023), No. 5, art. No. e202215324.
[[60]]
Chen XF, Huang RS, Ding MY, He HB, Wang F, Yin SB. Hexagonal WO3/3D porous graphene as a novel zinc intercalation anode for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(3): 3961,
CrossRef Google scholar
[[61]]
Yang BB, Qin T, Du YY, et al.. Rocking-chair proton battery based on a low-cost “water in salt” elecroolyte. Chem. Commun., 2022, 58(10): 1550,
CrossRef Google scholar
[[62]]
Cheng YW, Luo LL, Zhong L, et al.. Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces, 2016, 8(22): 13673,
CrossRef Google scholar
[[63]]
M.S. Chae and S.T. Hong, Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombo-hedral zinc hexacyanoferrate cathode, Batteries, 5(2019), No. 1, art. No. 3.
[[64]]
Lv Z, Wang B, Ye M, Zhang Y, Yang Y, Li CC. Activating the stepwise intercalation-conversion reaction of layered copper sulfide toward extremely high capacity zinc-metal-free anodes for rocking-chair zinc-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(1): 1126,
CrossRef Google scholar
[[65]]
L. Wen, Y.N. Wu, S.L. Wang, et al., A novel TiSe2 (de)inter-calation type anode for aqueous zinc-based energy storage, Nano Energy, 93(2022), art. No. 106896.
[[66]]
Du YQ, Zhang BY, Kang RK, et al.. Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries. J. Mater. Chem. A, 2022, 10(32): 16976,
CrossRef Google scholar
[[67]]
B.T. Zhao, S.L. Wang, Q.T. Yu, et al., A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode, J. Power Sources, 504(2021), art. No. 230076.
[[68]]
N.N. Liu, X. Wu, Y. Zhang, et al., Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries, Adv. Sci., 7(2020), No. 14, art. No. 2000146.
[[69]]
Y. Liu, X.M. Zhou, X. Wang, et al., Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries, Chem. Eng. J., 420(2021), art. No. 129629.
[[70]]
S.L. Leng, X.Y. Sun, Y.C. Yang, and R.H. Zhang, Borophene as an anode material for Zn-ion batteries: A first-principles investigation, Mater. Res. Express, 6(2019), No. 8, art. No. 085504.

Accesses

Citations

Detail

Sections
Recommended

/