Tracing carbonate diagenesis and hydrothermal activity during the opening of the Central South Atlantic: Insights from the Santos Basin (Brazil)

Igor Figueiredo , Cristiano Lana , Fernando F. Alkmim , Marco A. Silva , Maria Eugênia S. Souza , Dorval C. Dias-Filho , Eveline E. Zambonato , Katia R.N. Mendonça

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102115

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102115 DOI: 10.1016/j.gsf.2025.102115

Tracing carbonate diagenesis and hydrothermal activity during the opening of the Central South Atlantic: Insights from the Santos Basin (Brazil)

Author information +
History +
PDF

Abstract

The opening of the Central South Atlantic and the consequent formation of the eastern Brazilian continental margin was marked by a complex history of mafic magmatism, carbonate sedimentation, and deposition of a thick salt layer. The carbonates underlying the salt layer (pre-salt carbonates) were formed in restricted lacustrine basins. Here, the timing and fluid sources of deposition, diagenetic, and hydrothermal alterations of the pre-salt carbonate rocks are defined through in-situ U-Pb dating, 87Sr/86Sr, and trace element analyses of samples from the Santos Basin. The very alkaline nature of the Aptian lake(s) produced characteristically unique and widely distributed carbonate rocks such as Mg-clays with calcite spherulite and calcite crystal shrub limestones transitioning laterally and vertically into travertines formed by hydrothermal pulses during basin evolution. Hydrothermalism caused extensive replacement, dissolution, and calcite cementation. REE+Y PAAS-normalised patterns and 87Sr/86Sr ratios indicate that deposition/eo-diagenesis of the primary carbonates occurred in a lacustrine environment primarily controlled by evaporation, pH, and continental water source, with 2%-10% hydrothermal fluid input. Trace elements and Sr-isotope of travertines and burial diagenetic phases show that they are produced from a hot mixture of mafic/mantle-derived fluids and dissolution/alteration of older carbonate formations. U-Pb dating indicates that carbonate deposition occurred between 124.8 ± 2.6 Ma and 120.0 ± 1.6 Ma, earlier than previously proposed, followed closely by the circulation of hydrothermal fluids. Replacement and cementation ages range from 120.5 ± 2.4 Ma to 80.4 ± 2.4 Ma.

Keywords

Pre-salt / Carbonate / U-Pb dating / Sr-isotope / Trace elements / LA-ICP-MS

Cite this article

Download citation ▾
Igor Figueiredo, Cristiano Lana, Fernando F. Alkmim, Marco A. Silva, Maria Eugênia S. Souza, Dorval C. Dias-Filho, Eveline E. Zambonato, Katia R.N. Mendonça. Tracing carbonate diagenesis and hydrothermal activity during the opening of the Central South Atlantic: Insights from the Santos Basin (Brazil). Geoscience Frontiers, 2025, 16(5): 102115 DOI:10.1016/j.gsf.2025.102115

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Igor Figueiredo: Writing - review & editing, Writing - original draft, Visualization, Software, Investigation, Formal analysis, Data curation. Cristiano Lana: Writing - review & editing, Writing - original draft, Validation, Supervision, Methodology, Investigation, Data curation, Conceptualization. Fernando F. Alkmim: Writing - review & editing, Supervision, Investigation, Formal analysis, Data curation, Conceptualization. Marco A. Silva: Validation, Methodology, Investigation. Maria Eugênia S. Souza: Writing - review & editing, Investigation, Formal analysis. Dorval C. Dias-Filho: Project administration. Eveline E. Zambonato: Investigation, Data curation. Katia R.N. Mendonça: Investigation, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102115.

Acknowledgements

C. Lana and F. F. Alkmim benefit from the Brazilian National Research Council (CNPq) research grants 3073353/2019-2 and 311543/2020-0. C. Lana, F. F. Alkmim, and Maria Eugênia Souza are part of the Instituto GeoAtlântico, a National Institute of Science and Technology, CNPq-Brazil process 405653/2022-0. We acknowledge Petrobras’s support during the investigation and permission to publish this study. I. Figueiredo acknowledged the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for Master's scholarship 88887.816343/2023-00. We thank Filipe N. Oliveira for the discussion on the petrography and diagenesis of the investigated rocks. We are grateful to Dr. Stefan Schroeder and Dr. Michael Strugale, for their insightful suggestions and careful review of the manuscript.

References

[1]

Adriano M.S., Figueiredo J.P., Coelho P.H.G.R., Borghi L., 2022. Tectonic and stratigraphic evolution of the Santos Basin rift phase: new insights from seismic interpretation on Tupi oil field area. J. S. Am. Earth. Sci. 116, 103842. https://doi.org/10.1016/j.jsames.2022.103842.

[2]

Alkmim F.F., Lana C.C., Silva M.A.L., Oliveira F.N., Dias-Filho D.C., Zambonato E.E., Mendonça K.R.N., 2025. U-Pb ages of pre-to post-salt carbonates, Santos and Campos basins, SE Brazil: implications for the evolution of the south Atlantic. Mar. Pet. Geol. 171, 107192. https://doi.org/10.1016/j.marpetgeo.2024.107192.

[3]

Araujo M.N., Pérez-Gussinyé M., Muldashev I., 2022. Oceanward rift migration during formation of Santos-Benguela ultra-wide rifted margins. In: NemcˇokM., DoranH., DoréA.G., LedvényiováL., RybárS. (TectonicDevelopment, Soc.Eds.), Thermal History and Hydrocarbon Habitat Models of Transform Margins: Their Differences from Rifted Margins. Geol. London Spec. Pub., 524, 65-91. https://doi.org/10.1144/SP524-2021-123.

[4]

Arienti L.M., Souza R.S., Viana S., Cuglieri M.A., Silva R.P., Tonietto S., Paula L., Gil J.A., 2018. Facies Association, Depositional Systems, and Paleophysiographic Models of the Barra Velha Formation, Pre-Salt Sequence - Santos Basin, Brazil. AAPG Annual Convention and Exhibition 2018, Salt Lake City, Utah.

[5]

Banner J.L., Hanson G.N., Meyers W.J., 1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): implications for REE mobility during carbonate diagenesis. J. Sediment. Res. 58, 415-432. https://doi.org/10.1306/212F8DAA-2B24-11D7-8648000102C1865D.

[6]

Barnett A.J., Obermaier M., Amthot J., Juk K., Camara R., Sharafodin M., Bolton M., 2018. Origin and significance of thick carbonate grainstone packages in non-marine successions: a case study from the Barra Velha Formation, Santos Basin. AAPG Datapages/Search and Discovery Article #11116.

[7]

Barrat J.A., Boulègue J., Tiercelin J.J., Lesourd M., 2000. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochim. Cosmochim. Acta 64, 287-298. https://doi.org/10.1016/S0016-7037(99)00294-X.

[8]

Bau M., Dulski P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 79, 37-55. https://doi.org/10.1016/0301-9268(95)00087-9.

[9]

Bau M., Dulski P., Möller P., 1995. Yttrium and holmium in South Pacific seawater: vertical distribuction and possible fractionation mechanisms. Chem. Erde 55, 1-15.

[10]

Bolhar R., Vankranendonk M., 2007. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 155, 229-250. https://doi.org/10.1016/j.precamres.2007.02.002.

[11]

Brito J.P.S., Santos R.V., Gonçalves G.O., Barbosa P.F., Souza Cruz C.E., Ushirobira C.A., Souza V.S., Richter F., Abreu C.J., 2024. U-Pb dating of Barra Velha carbonates reveals the influence of Santos Basin sedimentary and tectonothermal history on pre-salt carbonate ages. Mar. Pet. Geol. 168, 107035. https://doi.org/10.1016/j.marpetgeo.2024.107035.

[12]

Carvalho A.M., Hamon Y., De Souza G., Jr O., Goulart Carramal N., Collard N., 2022. Facies and diagenesis distribution in an Aptian pre-salt carbonate reservoir of the Santos Basin, offshore Brazil: a comprehensive quantitative approach. Mar. Pet. Geol. 141, 105708. https://doi.org/10.1016/ j.marpetgeo.2022.105708.

[13]

Chang C., Fu Q., Wang X., 2019. Linear correlation of Ba and Eu contents by hydrothermal activities: a case study in the Hetang Formation, South China. Geofluids 2019, 1-15. https://doi.org/10.1155/2019/9797326.

[14]

Cherniak D.J., 1998. REE diffusion in calcite. Earth Planet. Sci. Lett. 160, 273-287. https://doi.org/10.1016/S0012-821X(98)00087-9.

[15]

Craddock P.R., Bach W., Seewald J.S., Rouxel O.J., Reeves E., Tivey M.K., 2010. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim. Cosmochim. Acta 74, 5494-5513. https://doi.org/10.1016/j.gca.2010.07.003.

[16]

Debruyne D., Balcaen L., Vanhaecke F., Muchez P., 2013. Rare earth element and yttrium characteristics of carbonates within the sediment-hosted Luiswishi and Kamoto Cu-Co deposits, Katanga Copperbelt (Democratic Republic of Congo-DRC). Geol. Belg. 16, 76-83.

[17]

De Ros L.F., Oliveira D.M., 2023. Na operational classification system for the South Atlantic pre-salt rocks. J. Sediment. Res. 93, 693-704. https://doi.org/10.2110/jsr.2022.103.

[18]

Debruyne D., Hulsbosch N., Muchez P., 2016. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source- sink system. Ore Geol. Rev. 72, 232-252 https://doi.org/10.1016/j.oregeorev.2015.07.022.

[19]

Dekov V.M., Egueh N.M., Kamenov G.D., Bayon G., Lalonde S.V., Schmidt M., Liebetrau V., Munnik F., Fouquet Y., Tanimizu M., Awaleh M.O., Guirreh I., Le Gall B., 2014. Hydrothermal carbonate chimneys from a continental rift (Afar Rift): mineralogy, geochemistry, and mode of formation. Chem. Geol. 387, 87-100. https://doi.org/10.1016/j.chemgeo.2014.08.019.

[20]

Erthal M.M., Capezzuoli E., Mancini A., Claes H., Soete J., Swennen R., 2017. Shrub morpho-types as indicator for the water flow energy-Tivoli travertine case (Central Italy). Sediment. Geol. 347, 79-99.

[21]

Falcão L.C., 2015.Estudo Faciológico deum intervaloAptianodo poçoSB-1 (Baciade Santos) e sua comparação com travertinos quaternários de San Juan, Argentina. Universidade Federal Fluminense, Unpl. Master thesis, Rio de Janeiro, 136 pp.

[22]

Farias F., Szatmari P., Bahniuk A., França A.B., 2019. Evaporitic carbonates in the pre-salt of Santos Basin - genesis and tectonic implications. Mar. Pet. Geol. 105, 251-272. https://doi.org/10.1016/j.marpetgeo.2019.04.020.

[23]

Gomes J.P., Bunevich R.B., Tedeschi L.R., Tucker M.E., Whitaker F.F., 2020. Facies classification and patterns of lacustrine carbonates deposition of the Barra Velha Formation, Santos Basin. Brazilian Pre-Salt. Mar. Pet. Geol. 113, 104176. https://doi.org/10.1016/j.marpetgeo.2019.104176.

[24]

Gordon A.C., Mohriak W.U., Stanton N., Santos A.C., 2023. Magmatic cycles in Santos Basin (S.E. Brazil): Tectonic control in the temporal-spatial distribution and geophysical signature. J. S. Am. Earth. Sci. 121, 104111. https://doi.org/10.1016/j.jsames.2022.104111.

[25]

Hecht L., Freiberger R., Gilg H.A., Grundmann G., Kostitsyn Y.A., 1999. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem. Geol. 155, 115-130. https://doi.org/10.1016/ S0009-2541(98)00144-2.

[26]

Herlinger Jr., R., Zambonato E.E., De Ros, L.F., 2017. Influence of diagenesis on the quality of lower Cretaceous Pre-Salt lacustrine carbonate reservoirs from northern Campos Basin, offshore Brazil. J. Sediment. Res. 87, 1285-1313, https://doi.org/10.2110/jsr.2017.70

[27]

Hill C.A., Polyak V.J., Asmerom Y.P., Provencio P., 2016. Constraints on a late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone. Tectonics 35, 896-906. https://doi.org/10.1002/2016TC004166.

[28]

Kamber B.S., Bolhar R., Webb G.E., 2004. Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Res. 132, 379-399.

[29]

Karner G.D., Gamboa L.A.P., 2007. Timing and origin of the South Atlantic pre-salt sag basins and their capping evaporites. In: SchreiberB.B.(Ed.), Evaporites Through Space and Time. Geological Society of London Special Publications, 285, pp. 15-35. https://doi.org/10.1144/SP285.2.

[30]

Karner G.D., Johnson C., Shoffner J., Lawson M., Sullivan M., Sitgreaves J., McHarge J., Stewart J., Figueredo P., 2021. Tectono-magmatic development of the santos and Campos Basins, Offshore Brazil. In: MelloM.R., YilmaznP.O., KatzB.J. (Memoir 124:Eds.), the Supergiant Lower Cretaceous Pre-Salt Petroleum Systems of the Santos Basin, Brazil. AAPG, pp. 215-256. https://doi.org/10.1306/13722321MSB.9.1853.

[31]

Lana C., Farina F., Gerdes A., Alkmim A., Gonçalves G.O., Jardim A.C., 2017. Characterization of zircon reference materials via high precision U-Pb LA-MC-ICP-MS. J. Anal. At. Spectrom. 32, 2011-2023. https://doi.org/10.1039/C7JA00167C.

[32]

Lawrence M.G., Greig A., Collerson K.D., Kamber B.S., 2006. Rare earth element and yttrium variability in South East Queensland Waterways. Aquat. Geochem. 12, 39-72. https://doi.org/10.1007/s10498-005-4471-8.

[33]

Lawson M., Sitgreaves J., Rasbury T., Wooton K., Esch W., Marcon V., Henares S., Konstantinou A., Kneller E., Gombosi D., Torres V., Silva A., Alevato R., Wren M., Becker S., Eiler J., 2023. New age and lake chemistry constraints on the Aptian pre-salt carbonates of the central South Atlantic. GSA Bull. 135, 595-607. https://doi.org/10.1130/B36378.1.

[34]

Li F., Webb G.E., Algeo T.J., Kershaw S., Lu C., Oehlert A.M., Gong Q., Pourmand A., Tan X., 2019. Modern carbonate ooids preserve ambient aqueous REE signatures. Chem. Geol. 509, 163-177. https://doi.org/10.1016/j.chemgeo.2019.01.015.

[35]

Lima B.E.M., De Ros L.F., 2019. Deposition, diagenetic and hydrothermal processes in the Aptian Pre-Salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sediment. Geol. 383, 55-81. https://doi.org/10.1016/j.sedgeo.2019.01.006.

[36]

Lima B.E.M., Tedeschi L.R., Pestilho A.L.S., Santos R.V., Vazquez J.C., Guzzo J.V.P., De Ros L.F., 2020. Deep-burial hydrothermal alteration of the Pre-Salt carbonate reservoirs from northern Campos Basin, offshore Brazil: evidence from petrography, fluid inclusions, Sr, C and O isotopes. Mar. Pet. Geol. 113, 104143. https://doi.org/10.1016/j.marpetgeo.2019.104143.

[37]

Loma R., Tritlla J., Esteban M., Sanders C., Carrasco A., Herra A., Gerona M., Mañas M., Boix C., 2018. Hydrothermal flushing and calcite precipitation as main modifiers of a pre-salt reservoir in Kwanza Basin (Angola). AAPG Annual Convention and Exhibition 2018, Salt Lake City, Utah.

[38]

Lüders V., Moeller P., Dulski P., 1993. REE fractionation in carbonates and fluorites. In: MoellerP., LüdersV. (Formationof Hydrothermal Vein Deposits.Eds.), A case study of the Pb-Zn-, barite and fluorite deposits of (Monograph Series on Mineral Deposits, 30). Gebrüder Borntraeger 133-150.

[39]

Ludwig K.R., 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, Revised August 27.Special publication / Berkeley Geochronology Center. Kenneth R. Ludwig, Berkeley CA.

[40]

Ludwig K.R., 2012. User’s manual for Isoplot version 3. 75-4.15: a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication.

[41]

Magnall J.M., Gleeson S.A., Blamey N.J.F., Paradis S., Luo Y., 2016. The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada). Geochim. Cosmochim. Acta 193, 251-273. https://doi.org/10.1016/j.gca.2016.07.020.

[42]

Mercedes-Martín R., Ayora C., Tritlla J., Sánchez-Román M., 2019. The hydrochemical evolution of alkaline volcanic lakes: a model to understand the South Atlantic Pre-salt mineral assemblages. Earth-Sci. Rev. 198, 102938. https://doi.org/10.1016/j.earscirev.2019.102938.

[43]

Mohammadi Z., Claes H., Capezzuoli E., Mozafari M., Soete J., Aratman C., Swennen R., 2020. Lateral and vertical variations in sedimentology and geochemistry of sub-horizontal laminated travertines (Çakmak quarry, Denizli Basin, Turkey). Quat. Int. 540, 146-168. https://doi.org/10.1016/j. quaint.2018.11.041.

[44]

Mohriak W., Nemcˇok M., Enciso G., 2008. South Atlantic divergent margin evolution: Rift-border uplift and salt tectonics in the basins of SE Brazil. Geol. Soc. London Spec. Pub. 294, 365-398. https://doi.org/10.1144/SP294.19.

[45]

Möller P., Bau M., 1993. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet. Sci. Lett. 117, 671-676.

[46]

Moreira J.L.P., Madeira C.V., Gil J.A., Machado M.A.P., 2007. Bacia de Santos. Boletim De Geociências Da Petrobras 15 (2), 531-549.

[47]

Ojiambo B.S., Berry Lyons W., Welch K.A., Poreda R.J., Johannesson K.H., 2003. Strontium isotopes and rare earth elements as tracers of groundwater-lake water interactions, Lake Naivasha, Kenya. Appl. Geochem. 18, 1789-1805. https://doi.org/10.1016/S0883-2927(03)00104-5.

[48]

Pietzsch R., Oliveira D.M., Tedeschi L.R., Queiroz Neto J.V., Figueiredo M.F., Vazquez J.C., De Souza R.S., 2018. Palaeohydrology of the lower Cretaceous pre-salt lacustrine system, from rift to post-rift phase, Santos Basin, Brazil. Palaeogeog. Palaeoclimatol. Palaeoecol. 507, 60-80. https://doi.org/10.1016/j.palaeo.2018.06.043.

[49]

Poros Z., Jagniecki E., Luczaj J., Kenter J., Gal B., Correa T.S., Ferreira E., McFadden K.A., Elifritz A., Heumann M., Johnston M., Matt V., 2017. Origin of Silica in Pre-Salt Carbonates, Kwanza Basin. AAPG Annual Convention and Exhibition, Houston, Texas, USA.

[50]

Qing H., Mountjoy E.W., 1994. Rare earth element geochemistry of dolomites in the Middle Devonian Presqu’ile barrier, Western Canada Sedimentary Basin: implications for fluid-rock ratios during dolomitization. Sedimentology 41, 787-804. https://doi.org/10.1111/j.1365-3091.1994.tb01424.x.

[51]

Rabinowitz P.D., LaBrecque J., 1979. The Mesozoic South Atlantic Ocean and evolution of its continental margins. J. Geophys. Res. 84, 5973-6002. https://doi.org/10.1029/JB084iB11p05973.

[52]

Rankenburg K., Lassiter J.C., Brey G., 2004. Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain - constraints on magma genesis and crustal contamination. Contrib. Mineral. Petrol. 147, 129-144. https://doi.org/10.1007/s00410-003-0534-2.

[53]

Rieger P., Magnall J.M., Gleeson S.A., Oelze M., Wilke F.D.H., Lilly R., 2021. Differentiating between hydrothermal and diagenetic carbonates using rare earth element and yttrium (REE+Y) geochemistry: a case study from the Paleoproterozoic George Fisher massive sulphide Zn deposit. Mineral. Deposita 57, 187-206. https://doi.org/10.1007/s00126-021-01056-1.

[54]

Rizzo A.L., Uysal I.T., Mutlu H., Ünal-Imer E., Dirik K., Yüce G., Caracausi A., Italiano F., Misseri M., Temel A., Bayarı S., Özyurt N., Zhao J., Deniz K., 2019. Geochemistry of fluid inclusions in travertines from Western and Northern Turkey: inferences on the role of active faults in fluids circulation. Geochem. Geophys. Geosyst. 20, 5473-5498. https://doi.org/10.1029/2019GC008453.

[55]

Roberts S., Palmer M.R., Cooper M.J., Buchaus P., Sargent D., 2009. REE and Sr isotope characteristics of carbonate within the Cu-Co mineralized sedimentary sequence of the Nchanga Mine, Zambian Copperbelt. Mineral. Deposita 44, 881-891. https://doi.org/10.1007/s00126-009-0254-2.

[56]

Roberts N.M.W., Rasbury E.T., Parrish R.R., Smith C.J., Horstwood M.S.A., Condon D.J., 2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 18, 2807-2814. https://doi.org/10.1002/2016GC006784.

[57]

Rochelle-Bates N., Wood R., Schröder S., Roberts N.M.W., 2022. In situ U-Pb geochronology of Pre-Salt carbonates reveals links between diagenesis and regional tectonics. Terra Nova 34, 271-277. https://doi.org/10.1111/ter.12586.

[58]

Silva J.P.A., Lana C., Mazoz A., Buick I., Scholz R., 2023. U-Pb saturn: new U-Pb/Pb-Pb data reduction software for LA-ICP-MS. Geostand. Geoanal. Res. 47, 49-66. https://doi.org/10.1111/ggr.12474.

[59]

Souza R.S., Arienti L.M., Viana S.M., Falcão L.C., Cuglieri M.A., Silva Filho R.P., Leite C.O., Oliveira V.C., Oliveira D.M., Anjos C., Amora R., Carmo I.D., Coelho C.E., 2018. Petrology of the hydrothermal and evaporitic continental Cretaceous (Aptian) pre-salt carbonates and associated rocks, South Atlantic Santos Basin, Offshore Brazil. AAPG Annual Convention and Exhibition 2018, Salt Lake City, Utah. AAPG Datapages/Search and Discovery Article #90323.

[60]

Strugale M., Cartwright J., 2022. Tectono-stratigraphic evolution of the rift and post-rift systems in the Northern Campos Basin, offshore Brazil. Basin Res. 34, 1655-1687. https://doi.org/10.1111/bre.12674.

[61]

Strugale M., Lima B.E.M., Day C., Omma J., Rushton J., Olivito J.P.R., Bouch J., Robb L., Roberts N., Cartwright J., 2025. Diagenetic products, setting and evolution of the pre-salt succession in the Northern Campos Basin, Brazil. Geol. Soc. London Spec. Pub. 548, 1-5. https://doi.org/10.1144/SP548-2023-93.

[62]

Szatmari P., Milani E.J., 2016. Tectonic control of the oil-rich large igneous-carbonate-salt province of the South Atlantic rift. Mar. Pet. Geol. 77, 567-596. https://doi.org/10.1016/j.marpetgeo.2016.06.004.

[63]

Taylor S.R., McLennan S.M., 1985. In:The Continental Crust: Its Composition and Evolution. Blackwell, Cambridge, p. 312.

[64]

Tedeschi L.R., Jenkyns H.C., Robinson S.A., Sanjinés A.E.S., Viviers M.C., Quintaes C.M.S.P., Vazquez J.C., 2017. New age constraints on Aptian evaporites and carbonates from the South Atlantic: implications for Oceanic Anoxic Event 1a. Geology 45, 543-546. https://doi.org/10.1130/G38886.1.

[65]

Tedeschi R.L., 2017. In:Lower Cretaceous Climate Records and the Correlation between Marine and Lacustrine Settings (Europe and South America). University of Oxford, p. 343 (Ph.D. thesis).

[66]

Török A., Claes H., Brogi A., Liotta D., Tóth Á., Mindszenty A., Kudó I., Kele S., Huntington K.W., Shen C., Swennen R., 2019. A multi-methodological approach to reconstruct the configuration of a travertine fissure ridge system: the case of the Cukor quarry (Sütto, Gerecse Hills, Hungary). Geomorphology 345, 106836. https://doi.org/10.1016/j.geomorph.2019.106836.Geomorphology 345, 106836. https://doi.org/10.1016/j.geomorph.2019.106836.

[67]

Torsvik T.H., Rousse S., Labails C., Smethurst M.A., 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. 177, 1315-1333 https://doi.org/10.1111/j.1365-246X.2009.04137.x

[68]

Tostevin R., Shields G.A., Tarbuck G.M., He T., Clarkson M.O., Wood R.A., 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 438, 146-162. https://doi.org/10.1016/j.chemgeo.2016.06.027.

[69]

Tritlla J., Esteban M., Loma R., Mattos A., Sánchez V., Boix C., da Luca P. H.V., Carballo J., Levresse G., 2018. Carbonates That Are No More: Silicified Pre-Salt Oil Reservoirs in Campos Basin (Brazil). AAPG Annual Convention and Exhibition 2018, Salt Lake City, Utah.

[70]

Van Kranendonk M.J., Webb G.E., Kamber B.S., 2003. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1, 91-108. https://doi.org/10.1046/j.1472-4669.2003.00014.x.

[71]

Webb G.E., Kamber B.S., 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim. Cosmochim. Acta 64, 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7.

[72]

Williams-Jones A.E., Migdisov A.A., Samson I.M., 2012. Hydrothermal mobilisation of the rare earth elements-a tale of "ceria" and "yttria". Elements 8, 355-360. https://doi.org/10.2113/gselements.8.5.355.

[73]

Wilson A.H., Zeh A., Gerdes A., 2017. In situ Sr isotopes in plagioclase and trace element systematics in the lowest part of the Eastern Bushveld complex: dynamic processes in an evolving magma chamber. J. Petrol. 58, 327-360. https://doi.org/10.1093/petrology/egx018.

[74]

Wright V.P., Barnett A.J., 2015. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. In: BosenceD.W.J., GibbonsK.A., Le HeronD.P., MorganW.A., PritchardT., ViningB.A. (Microbial Carbonates in Space and Time: Soc.Eds.), Implications for Global Exploration and Production. Geol. London Spec. Pub. 418, 209-219. https://doi.org/10.1144/SP418.3.

[75]

Winter W.R., Jahnert R.T., França A.B., 2007. Bacia de Campos. Boletim de Geociências da Petrobras 15, 511-529.

[76]

Yang Y., Wu F., Xie L., Yang J.-H., Zhang Y., 2009. In-situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS. Acta Petrol. Sin. 25, 3431-3441.

[77]

Yang Y.-H., Wu F.-Y., Yang J.-H., Chew D.M., Xie L.-W., Chu Z.-Y., Zhang Y.-B., Huang C., 2014. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem. Geol. 385, 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012.

[78]

Zhao Y., Wei W., Santosh M., Hu J., Wei H., Yang J., Liu S., Zhang G., Yang D., Li S., 2022. A review of retrieving pristine rare earth element signatures from carbonates. Palaeogeog. Palaeoclimatol. Palaeoecol. 586, 110765. https://doi.org/10.1016/j.palaeo.2021.110765.

[79]

Zhong S., Mucci A., 1995. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25℃ and 1 atm, and high dissolved REE concentrations. Geochim. Cosmochim. Acta 59, 443-453. https://doi.org/10.1016/0016-7037(94)00381-U.

AI Summary AI Mindmap
PDF

443

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/