The net warming effect of clouds on global surface temperature may be weakening or even disappearing

Chuanye Shi , Tianxing Wang , Gaofeng Wang , Husi Letu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102107

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102107 DOI: 10.1016/j.gsf.2025.102107

The net warming effect of clouds on global surface temperature may be weakening or even disappearing

Author information +
History +
PDF

Abstract

Climate change is significantly influenced by both clouds and Earth's surface temperature (EST). While numerous studies have investigated clouds and EST separately, the extent of clouds' impact on EST remains unclear. Based on the inspiration and limitation of cloud radiative effect (CRE), this study provides a pioneering attempt to propose a novel indicator, cloud radiative effect on surface temperature (CREST), aiming to quantify how clouds affect EST globally while also analyzing the physical mechanism. Using reanalysis and remotely sensed data, a phased machine learning scheme in combination of surface energy balance theory is proposed to estimate EST under all-sky and hypothetical clear-sky conditions in stages, thereby estimating the newly defined CREST by subtracting the hypothetical clear-sky EST from the all-sky EST. The inter-annual experiments reveal the significant spatial heterogeneity in CREST across land, ocean, and ice/snow regions. As a global offset of the heterogeneity, clouds exhibit a net warming effect on global surface temperature on an annual scale (e.g., 0.26 K in 1981), despite their ability to block sunlight. However, the net warming effect has gradually weakened to nearly zero over the past four decades (e.g., only 0.06 K in 2021), and it's even possible to transform into a cooling effect, which might be good news for mitigating the global warming.

Keywords

Cloud radiative effect / Earth's surface temperature / Climate change / Surface energy balance

Cite this article

Download citation ▾
Chuanye Shi, Tianxing Wang, Gaofeng Wang, Husi Letu. The net warming effect of clouds on global surface temperature may be weakening or even disappearing. Geoscience Frontiers, 2025, 16(5): 102107 DOI:10.1016/j.gsf.2025.102107

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Chuanye Shi: Writing - original draft, Visualization, Investiga-tion, Conceptualization. Tianxing Wang: Writing - review & edit-ing, Methodology, Formal analysis. Gaofeng Wang: Investigation, Formal analysis. Husi Letu: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was carried out under the co-funding of the National Natural Science Foundation of China (NSFC) project (Grant No. 42022008), Zhuhai basic and applied research project (Grant No. ZH22017003200009PWC), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. 311022003).

References

[1]

Abbasi B., Qin Z.H., Du W.H., Li S.F., Fan J.L., Zhao S.H., 2020. Effects of cloud on land surface temperature (LST) change in thermal infrared remote sensing images: A case study of Landsat 8 data. In: Proc. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 5430-5433. https://doi.org/10.1109/IGARSS39084.2020.9324415.

[2]

Allan R.P., 2011. Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteorol. Appl. 18, 324-333. https://doi.org/10.1002/met.285.

[3]

Arking A., Ziskin D., 1994. Relationship between clouds and sea surface temperatures in the western tropical Pacific. J. Clim. 7, 988-1000. https://doi.org/10.1175/1520-0442(1994)007<0988:Rbcass>2.0.Co;2.

[4]

Athey S., Tibshirani J., Wager S., 2019. Generalized random forests. Ann. Stat. 47, 1148-1178. https://doi.org/10.1214/18-aos1709.

[5]

Banerjee A.K., Dutta S., Dey S., 2022. Contrasting impacts of net cloud radiative forcing on the surface temperature trends in India. Environ. Res. Commun. 4, 9. https://doi.org/10.1088/2515-7620/ac52e0.

[6]

Bellomo K., Clement A.C., Murphy L.N., Polvani L.M., Cane M.A., 2016. New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 43, 9852-9859. https://doi.org/10.1002/2016gl069961.

[7]

Ceppi P., Brient F., Zelinka M.D., Hartmann D.L., 2017. Cloud feedback mechanisms and their representation in global climate models. WIREs Clim. Change 8, 21. https://doi.org/10.1002/wcc.465.

[8]

Ceppi P., Nowack P., 2021. Observational evidence that cloud feedback amplifies global warming. PNAS 118, 7. https://doi.org/10.1073/pnas.2026290118.

[9]

Chen G.X., Wang W.C., Bao Q., Li J.D., 2022. Evaluation of simulated cloud diurnal variation in CMIP 6 climate models. J. Geophys. Res.-Atmos. 127, 14. https://doi.org/10.1029/2021jd036422.

[10]

Cheng J., Liang S.L., 2014. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. J. Geophys. Res.-Atmos. 119, 614-634. https://doi.org/10.1002/2013jd020689.

[11]

Cheng J., Liang S.L., Verhoef W., Shi L.P., Liu Q., 2016. Estimating the hemispherical broadband longwave emissivity of global vegetated durfaces using a radiative transfer model. IEEE Trans. Geosci. Remote Sens. 54, 905-917. https://doi.org/10.1109/tgrs.2015.2469535.

[12]

Cheng J., Liang S.L., Yao Y.J., Ren B.Y., Shi L.P., Liu H., 2014. A comparative study of three land surface broadband emissivity datasets from satellite data. Remote Sens. 6, 111-134. https://doi.org/10.3390/rs6010111.

[13]

Curry J.A., Ebert E.E., 1992. Annual cycle of radiation fluxes over the arctic ocean: Sensitivity to cloud optical properties. J. Clim. 5, 1267-1280. https://doi.org/10.1175/1520-0442(1992)005<1267:Acorfo>2.0.Co;2.

[14]

Dickinson R.E., 1988. The force-restore model for surface temperatures and its generalizations. J. Clim. 1, 1086-1097. https://doi.org/10.1175/1520-0442(1988)001<1086:Tfmfst>2.0.Co;2.

[15]

Forster P., Storelvmo T., Armour K., Collins W., Dufresne J.-L., Frame D., Lunt D.J., Mauritsen T., Palmer M.D., Watanabe M., Wild M., Zhang H., 2023. The Earth's energy budget, climate feedbacks, and climate sensitivity. in:Climate Change 2021 - The Physical Science Basis:Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom, pp. 923-1054. https://doi.org/10.1017/9781009157896.009.

[16]

Gallagher M.R., Chepfer H., Shupe M.D., Guzman R., 2020. Warm temperature extremes across Greenland connected to clouds. Geophys. Res. Lett. 47, 10. https://doi.org/10.1029/2019gl086059.

[17]

Henderson D.S., L'Ecuyer T., Stephens G., Partain P., Sekiguchi M., 2013. A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteorol. Climatol. 52, 853-871. https://doi.org/10.1175/jamc-d-12-025.1.

[18]

Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.N., 2020. The ERA 5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999-2049. https://doi.org/10.1002/qj.3803.

[19]

Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut, J-N., 2023. ERA 5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S). Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47.

[20]

Intrieri J.M., Fairall C.W., Shupe M.D., Persson P.O.G., Andreas E.L., Guest P.S., Moritz R.E., 2002. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res.-Oceans 107, 14. https://doi.org/10.1029/2000jc000439.

[21]

Jia A.L., Liang S.L., Wang D.D., 2022. Generating a 2-km, all-sky, hourly land surface temperature product from Advanced Baseline Imager data. Remote Sens. Environ. 278, 20. https://doi.org/10.1016/j.rse.2022.113105.

[22]

Jia A.L., Ma H., Liang S.L., Wang D.D., 2021. Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method. Remote Sens. Environ. 263, 13. https://doi.org/10.1016/j.rse.2021.112566.

[23]

Jiang B., Liang S.L., Ma H., Zhang X.T., Xiao Z.Q., Zhao X., Jia K., Yao Y.J., Jia A.L., 2016. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation. Remote Sens. 8, 17. https://doi.org/10.3390/rs8030222.

[24]

Jin M.L., 2000. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment. J. Geophys. Res-Atmos. 105, 4061-4076. https://doi.org/10.1029/1999jd901088.

[25]

Kaartvedt S., Langbehn T.J., Aksnes D.L., 2019. Enlightening the ocean's twilight zone. ICES J. Mar. Sci. 76, 803-812. https://doi.org/10.1093/icesjms/fsz010.

[26]

Kalisch J., Macke A., 2012. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations. Atmos. Meas. Tech. 5, 2391-2401. https://doi.org/10.5194/amt-5-2391-2012.

[27]

Ke G.L., Meng Q., Finley T., Wang T.F., Chen W., Ma W.D., Ye Q.W., Liu T.Y., 2017. LightGBM: A highly efficient gradient boosting decision tree. in:31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA.

[28]

Kim J.E., Laguë M.M., Pennypacker S., Dawson E., Swann A.L.S., 2020. Evaporative resistance is of equal importance as surface albedo in high-latitude surface temperatures due to cloud feedbacks. Geophys. Res. Lett. 47, 10. https://doi.org/10.1029/2019gl085663.

[29]

Lee X., Goulden M.L., Hollinger D.Y., Barr A., Black T.A., Bohrer G., Bracho R., Drake B., Goldstein A., Gu L.H., Katul G., Kolb T., Law B.E., Margolis H., Meyers T., Monson R., Munger W., Oren R., Kyaw T.P.U., Richardson A.D., Schmid H.P., Staebler R., Wofsy S., Zhao L., 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384-387. https://doi.org/10.1038/nature10588.

[30]

Li J., Xiao Z.Q., 2020. Evaluation of the version 5.0 global land surface satellite (GLASS) leaf area index product derived from MODIS data. Int. J. Remote Sens. 41, 9140-9160. https://doi.org/10.1080/01431161.2020.1797222.

[31]

Li J.L.F., Lee W.L., Lee T., Fetzer E., Yu J.Y., Kubar T.L., Boening C., 2015. The impacts of cloud snow radiative effects on Pacific Ocean surface heat fluxes, surface wind stress, and ocean temperatures in coupled GCM simulations. J. Geophys. Res.-Atmos. 120, 2242-2260. https://doi.org/10.1002/2014jd022538.

[32]

Li X.C., Chen X.Y., Wu B.Y., Cheng X., Ding M.H., Lei R.B., Qi D., Sun Q.Z., Wang X. Y., Zhong W.L., Zheng L., Xin M.J., Shen X.C., Song C.T., Hou Y.R., 2023a. China's recent progresses in polar climate change and its interactions with the global climate system. Adv. Atmos. Sci. 40, 1401-1428. https://doi.org/10.1007/s00376-023-2323-3.

[33]

Li Z.L., Tang B.H., Wu H., Ren H.Z., Yan G.J., Wan Z.M., Trigo I.F., Sobrino J.A., 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008.

[34]

Li Z.L., Wu H., Duan S.B., Zhao W., Ren H.Z., Liu X.Y., Leng P., Tang R.L., Ye X., Zhu J.S., Sun Y.W., Si M.L., Liu M., Li J.H., Zhang X., Shang G.F., Tang B.H., Yan G.J., Zhou C.H., 2023b. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Rev. Geophys. 61, 77. https://doi.org/10.1029/2022rg000777.

[35]

Liu R.Y., Su J.B., Zheng D.H., H.S., Zhu Y.H., Pan Y., Shi C.X., Sun S., He J., 2025. Comprehensive assessment of various meteorological forcing datasets on the Tibetan Plateau: Insights from independent observations and multivariate comparisons. J. Hydrol. 656, 22. https://doi.org/10.1016/j.jhydrol.2025.133025.

[36]

Liu W.H., Cheng J., Wang Q., 2023. Estimating hourly all-weather land surface temperature from FY-4A/AGRI imagery using the surface energy balance theory. IEEE Trans. Geosci. Remote Sens. 61, 18. https://doi.org/10.1109/tgrs.2023.3254211.

[37]

Liu Y.H., Key J.R., Wang X.J., 2009. Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophys. Res. Lett. 36, 6. https://doi.org/10.1029/2009gl040708.

[38]

Lu L., Venus V., Skidmore A., Wang T.J., Luo G.P., 2011. Estimating land-surface temperature under clouds using MSG/SEVIRI observations. Int. J. Appl. Earth Obs. Geoinf. 13, 265-276. https://doi.org/10.1016/j.jag.2010.12.007.

[39]

Lutsko N.J., 2018. The relationship between cloud radiative effect and surface temperature variability at El Nino-Southern Oscillation frequencies in CMIP 5 models. Geophys. Res. Lett. 45, 10599-10608. https://doi.org/10.1029/2018gl079236.

[40]

Ma H., Liang S.L., 2022. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 273, 18. https://doi.org/10.1016/j.rse.2022.112985.

[41]

Martin A., Boyd P., Buesseler K., Cetinic I., Claustre H., Giering S., Henson S., Irigoien X., Kriest I., Memery L., Robinson C., Saba G., Sanders R., Siegel D., Villa-Alfageme M., Guidi L., 2020. The oceans' twilight zone must be studied now, before it is too late. Nature 580, 26-28. https://doi.org/10.1038/d41586-020-00915-7.

[42]

Matus A.V., L'Ecuyer T.S., 2017. The role of cloud phase in Earth's radiation budget. J. Geophys. Res.-Atmos. 122, 2559-2578. https://doi.org/10.1002/2016jd025951.

[43]

Norris J.R., Allen R.J., Evan A.T., Zelinka M.D., O'Dell C.W., Klein S.A., 2016. Evidence for climate change in the satellite cloud record. Nature 536, 72. https://doi.org/10.1038/nature18273.

[44]

Osman M.B., Tierney J.E., Zhu J., Tardif R., Hakim G.J., King J., Poulsen C.J., 2021. Globally resolved surface temperatures since the last Glacial Maximum. Nature 599, 239-244. https://doi.org/10.1038/s41586-021-03984-4.

[45]

Prokhorenkova L., Gusev G., Vorobev A., Dorogush A.V., Gulin A., 2018. CatBoost: Unbiased boosting with categorical features. in: 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, Canada.

[46]

Ramanathan V., Cess R.D., Harrison E.F., Minnis P., Barkstrom B.R., Ahmad E., Hartmann D., 1989. Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. Science 243, 57-63. https://doi.org/10.1126/science.243.4887.57.

[47]

Reijmer C.H., Bintanja R., Greuell W., 2001. Surface albedo measurements over snow and blue ice in thematic mapper bands 2 and 4 in Dronning Maud Land. Antarctica. J. Geophys. Res-Atmos. 106, 9661-9672. https://doi.org/10.1029/2000jd900718.

[48]

Ren Y., Zhang L., Suganthan P.N., 2016. Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput. Intell. Mag. 11, 41-53. https://doi.org/10.1109/mci.2015.2471235.

[49]

Scheffers B.R., De Meester L., Bridge T.C.L., Hoffmann A.A., Pandolfi J.M., Corlett R. T., Butchart S.H.M., Pearce-Kelly P., Kovacs K.M., Dudgeon D., Pacifici M., Rondinini C., Foden W.B., Martin T.G., Mora C., Bickford D., Watson J.E.M., 2016. The broad footprint of climate change from genes to biomes to people. Science 354, 11. https://doi.org/10.1126/science.aaf7671.

[50]

Sedlar J., Tjernström M., Mauritsen T., Shupe M.D., Brooks I.M., Persson P.O.G., Birch C.E., Leck C., Sirevaag A., Nicolaus M., 2011. A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Clim. Dyn. 37, 1643-1660. https://doi.org/10.1007/s00382-010-0937-5.

[51]

Shupe M.D., Intrieri J.M., 2004. Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 17, 616-628. https://doi.org/10.1175/1520-0442(2004)017<0616:Crfota>2.0.Co;2.

[52]

Stephens G.L., 2021. The cooling of light rains in a warming world. Nat. Clim. Change 11, 468-470. https://doi.org/10.1038/s41558-021-01056-z.

[53]

Van Tricht K., Lhermitte S., Lenaerts J.T.M., Gorodetskaya I.V., L'Ecuyer T.S., Noël B., van den Broeke M.R., Turner D.D., van Lipzig N.P.M., 2016. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7, 9. https://doi.org/10.1038/ncomms10266.

[54]

Wall C.J., Hartmann D.L., Norris J.R., 2019. Is the net cloud radiative effect constrained to be uniform over the tropical warm pools? Geophys. Res. Lett. 46, 12495-12503. https://doi.org/10.1029/2019gl083642.

[55]

Walsh J.E., Chapman W.L., 1998. Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalyses. J. Clim. 11, 3030-3045. https://doi.org/10.1175/1520-0442(1998)011<3030:Acrtai>2.0.Co;2.

[56]

Wang C.G., Soden B.J., Yang W.C., Vecchi G.A., 2021a. Compensation between cloud feedback and aerosol-cloud interaction in CMIP 6 models. Geophys. Res. Lett. 48, 10. https://doi.org/10.1029/2020gl091024.

[57]

Wang F., Qin Z., Fan W., Zhang S., 2019. Quantitative analysis between land surface temperature and radiation covered by clouds. J. Remote Sens. 23, 1113-1122. https://doi.org/10.11834/jrs.20198151.

[58]

Wang G.F., Wang T.X., Xue H.Z., 2021b. Validation and comparison of surface shortwave and longwave radiation products over the three poles. Int. J. Appl. Earth Obs. Geoinf. 104, 12. https://doi.org/10.1016/j.jag.2021.102538.

[59]

Wang S.P., Wang Q., Jordan R.E., Persson P.O.G., 2001. Interactions among longwave radiation of clouds, turbulence, and snow surface temperature in the Arctic: A model sensitivity study. J. Geophys. Res.-Atmos. 106, 15323-15333. https://doi.org/10.1029/2000jd900358.

[60]

Wei L.Y., Wang Y., Liu S., Zhang G., Wang B., 2021. Distinct roles of land cover in regulating spatial variabilities of temperature responses to radiative effects of aerosols and clouds. Environ. Res. Lett. 16, 10. https://doi.org/10.1088/1748-9326/ac3f04.

[61]

Xu F.B., Fan J.R., Yang C., Liu J.L., Zhang X.Y., 2022. Reconstructing all-weather daytime land surface temperature based on energy balance considering the cloud radiative effect. Atmos. Res. 279, 16. https://doi.org/10.1016/j.atmosres.2022.106397.

[62]

Yu W.P., Ma M.G., Wang X.F., Tan J.L., 2014. Estimating the land-surface temperature of pixels covered by clouds in MODIS products. J. Appl. Remote Sens. 8, 14. https://doi.org/10.1117/1.Jrs.8.083525.

[63]

Yuan T., Oreopoulos L., 2013. On the global character of overlap between low and high clouds. Geophys. Res. Lett. 40, 5320-5326. https://doi.org/10.1002/grl.50871.

[64]

Zeng C., Long D., Shen H.F., Wu P.H., Cui Y.K., Hong Y., 2018. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud. ISPRS J. Photogramm. Remote Sens. 141, 30-45. https://doi.org/10.1016/j.isprsjprs.2018.04.005.

[65]

Zhang G.Q., Yao T.D., Xie H.J., Kang S.C., Lei Y.B., 2013. Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys. Res. Lett. 40, 2125-2130. https://doi.org/10.1002/grl.50462.

[66]

Zhang M.H., Cess R.D., Xie S.C., 1996a. Relationship between cloud radiative forcing and sea surface temperatures over the entire tropical oceans. J. Clim. 9, 1374-1384. https://doi.org/10.1175/1520-0442(1996)009<1374:Rbcrfa>2.0.Co;2.

[67]

Zhang Q.B., Liu B., Li S.L., Zhou T.J., 2023. Understanding models' global sea fsurface temperature bias in mean state: From CMIP 5 to CMIP6. Geophys. Res. Lett. 50, 11. https://doi.org/10.1029/2022gl100888.

[68]

Zhang T., Stamnes K., Bowling S.A., 1996b. Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and subarctic. J. Clim. 9, 2110-2123. https://doi.org/10.1175/1520-0442(1996)009<2110:Iocosr>2.0.Co;2.

[69]

Zhang X.Y., Wang C.G., Zhao H., Lu Z.H., 2017. Retrievals of all-weather daytime land surface temperature from FengYun-2D data. Opt. Express 25, 27210-27224. https://doi.org/10.1364/oe.25.027210.

[70]

Zhou C., Liu Y.C., Wang Q., 2022. Calculating the climatology and anomalies of surface cloud radiative effect using cloud property histograms and cloud radiative kernels. Adv. Atmos. Sci. 39, 2124-2136. https://doi.org/10.1007/s00376-021-1166-z.

[71]

Zhou C., Zelinka M.D., Klein S.A., 2016. Impact of decadal cloud variations on the Earth's energy budget. Nat. Geosci. 9, 871. https://doi.org/10.1038/ngeo2828.

AI Summary AI Mindmap
PDF

598

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/