Effusive and explosive silicic eruptions during India-Seychelles continental breakup: the 62.5 Ma Dongri-Uttan rhyolite sequence, Mumbai area, western Deccan Traps

Arunodaya Shekhar , Hetu Sheth , Anmol Naik , B. Astha

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102106

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102106 DOI: 10.1016/j.gsf.2025.102106

Effusive and explosive silicic eruptions during India-Seychelles continental breakup: the 62.5 Ma Dongri-Uttan rhyolite sequence, Mumbai area, western Deccan Traps

Author information +
History +
PDF

Abstract

Large-scale Danian-age (post-K/Pg boundary) Deccan magmatism is well known from the Mumbai metropolitan area, located in the structurally complex Panvel flexure zone along the western Indian rifted continental margin. This compositionally diverse late-Deccan magmatic suite contains subaerial tholeiitic lavas and dykes typical of the main Deccan province, with many features atypical of the Deccan, such as spilitic pillow lavas, "intertrappean" sediments (often containing considerable volcanic ash), rhyolitic lavas and tuffs, gabbro-granophyre intrusions, and trachyte intrusions containing alkali basalt enclaves. Most of these units, previously dated at 62.5 Ma to 61 Ma, are contemporaneous with or slightly postdate the 62.5 Ma India-Seychelles continental breakup and Panvel flexure formation. In the Dongri-Uttan area, two samples of a >50-m-thick, columnar-jointed rhyolite from the Darkhan Quarry and from a section behind the current Uttan Sagari Police Station have previously been dated at 62.6 ± 0.6 Ma and 62.9 ± 0.2 Ma (40Ar/39Ar, 2σ errors). New exposures reveal that these two statistically indistinguishable 40Ar/39Ar ages correspond to two distinct rhyolite units, separated by well-bedded silicic ash. The columnar rhyolites are microcrystalline, composed of quartz and alkali feldspar, with rare small (1-2 mm), altered feldspar phenocrysts, and no recognisable relict vitroclasts. Given the westerly structural dip, most of their lateral extent is submerged under the Arabian Sea, and we consider them to be possible flood rhyolite lavas. We interpret the ash beds, composed of pumice clasts and glass shards, as a low-grade (nonwelded) vitric ash, derived from a possibly distal Plinian eruption and deposited by fallout. The lavas and ash are peraluminous rhyolites. The lavas are Sr-Ba-poor and Rb-Zr-Nb-rich, and show ";seagull-shaped" rare earth element patterns with deep negative europium anomalies. These crystal-poor lavas are "hot-dry-reduced" rhyolites typical of intraplate, continental rift and rifted margin settings. The very different high-field strength element contents of the lavas and the ash indicate compositionally distinct magma batches. The 62.5 Ma Dongri-Uttan sequence provides clear evidence for rapid silicic eruptions of effusive and explosive nature, alternating with each other and sourced from distinct magma chambers and eruptive vents. A newly identified, highly feldspar-phyric trachyte intrusion marks the last phase of magmatic activity in the area, corresponding with late-stage trachyte-syenite intrusions exposed in coastal western India and the Seychelles, and shows that the Mumbai rhyolites and trachytes form a compositional continuum.

Keywords

Flood basalt / Rhyolite / Trachyte / Continental breakup / Volcanic rifted margin / Deccan Traps / Mumbai

Cite this article

Download citation ▾
Arunodaya Shekhar, Hetu Sheth, Anmol Naik, B. Astha. Effusive and explosive silicic eruptions during India-Seychelles continental breakup: the 62.5 Ma Dongri-Uttan rhyolite sequence, Mumbai area, western Deccan Traps. Geoscience Frontiers, 2025, 16(5): 102106 DOI:10.1016/j.gsf.2025.102106

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

All relevant data have been provided in the body of this paper.

CRediT authorship contribution statement

Arunodaya Shekhar: Writing - original draft, Investigation, Formal analysis, Methodology, Funding acquisition. Hetu Sheth: Formal analysis, Investigation, Methodology, Funding acquisition, Writing - original draft. Anmol Naik: Funding acquisition, Conceptualization, Methodology, Writing - review & editing, Investigation, Formal analysis. B. Astha: Funding acquisition, Writing - review & editing, Methodology, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Field work was supported by the research award project RI/0220-10000618-001 to Sheth from the Industrial Research and Consultancy Centre (IRCC), IIT Bombay. Shekhar and Astha were supported by Prime Minister's Research Fellowships (PMRF, File Nos. 1303100 and 1303103, respectively). Naik was initially supported by an IIT Bombay Institute Post-Doctoral Fellowship (File No. HR-1 (HRM-1)/Rect/33/2022/20003002) and subsequently by a Goa State Research Foundation Post-doctoral Fellowship (File No. PDF2024003). We express our sincere gratitude to Prof. N. Prabhakar for kindly granting us access to the WD-XRF spectrometry facility (SIP Project; WBS Code: IN/22-1111039E-01), the ICP-MS facility, and the SERB-funded EPMA National Facility (IRPHA Grant No. IR/S4/ESF-16/2009(G)) in the Department of Earth Sciences, IIT Bombay. We are grateful to Prof. Prabhakar, Dr. Trupti Chandrasekhar, Mr. Premkumar Verma and Mr. Javed Shaikh for their supervision and assistance during the various laboratory analyses. We thank Gerardo Aguirre-Díaz, Shane Cronin, and an anonymous reviewer for helpful comments on an earlier version of this work. The present manuscript was considerably improved by the constructive reviews of Matt Brueseke and an anonymous referee. The editorial handling of C. Manikyamba and M. Santosh is appreciated.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102106.

References

[1]

Anderson Jr., J.E., 1969. Development of snowflake texture in a welded tuff, Davis Mountains, Texas. Soc. Am. Bull. 80, 2075-2080.

[2]

Andrews G.D.M., Branney M.J., 2005. Folds, fabrics, and kinematic criteria in rheomorphic ignimbrites of the Snake River Plain, Idaho:insights into emplacement and flow. In: PedersonJ., DehlerC. M. (Interiorwestern United States.Eds.), Geol. Soc. Am. Field Guide 6, 1-17. doi: 10.1130/2005.fld006(15).

[3]

Andrews G.D.M., Branney M.J., 2011. Emplacement and rheomorphic deformation of a large, lava-like rhyolitic ignimbrite: Grey's Landing, southern Idaho. Geol. Soc. Am. Bull. 123, 725-743.

[4]

Arth J.G., 1976. Behavior of trace elements during magmatic processes: a summary of theoretical models and their applications. J. Res. U.S. Geol. Surv. 4, 41-47.

[5]

Bachmann, O., Bergantz, G.W., 2004. On the origin of crystal-poor rhyolites: extracted from batholitic crystal mushes. J. Petrol. 45, 1565-1582. Bachmann, O., Bergantz, G.W., 2008. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277-2285.

[6]

Bachmann, O., Bergantz, G.W., 2008. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277-2285.

[7]

Baker I., 1968. Intermediate oceanic volcanic rocks and the 'Daly Gap'. Earth Planet. Sci. Lett. 4, 103-106.

[8]

Blatter D.L., Sisson T.W., Hankins W.B., 2023. Garnet stability in arc basalt, andesite, and dacite - an experimental study. Contrib. Mineral. Petrol. 178, 33. https://doi.org/10.1007/s00410-023-02008-w.

[9]

Bonnichsen B., Kauffman D.F., 1987. Physical features of rhyolite lava flows in the Snake River Plain volcanic province, southwestern Idaho. In: FinkJ.H. (Ed.), The Emplacement of Silicic Domes and Lava Flows. Geol. Soc. Am. Spec. Pap. 212, 119-145.

[10]

Breitkreuz C., 2013. Spherulites and lithophysae - 200 years of investigation on high-temperature crystallisation domains in silica-rich volcanic rocks. Bull. Volcanol. 75, 705. https://doi.org/10.1007/s00445-013-0705-6.

[11]

Breitkreuz C., Magnus M., 2024. Atlas of modern and ancient volcanic textures. Tech. Univ. Bergakad. Freiburg, Geowiss. 563, 222 p.

[12]

Brown R.J., Barry T.L., Branney M.J., Pringle M.S., Bryan S.E., 2003. The Quaternary pyroclastic succession of southern Tenerife, Canary Islands: explosive eruptions, related subsidence and sector collapse. Geol. Mag. 140, 265-288.

[13]

Brueseke M.E., Hart W.K., Heizler M.T., 2008. Diverse mid-Miocene silicic volcanism associated with the Yellowstone-Newberry thermal anomaly. Bull. Volcanol. 70, 343-360.

[14]

Brueseke M.E., Callicoat J.S., Hames W., Larson P.B., 2014. Mid-Miocene rhyolite volcanism in northeastern Nevada: the Jarbidge Rhyolite and its relationship to the Cenozoic evolution of the northern Great Basin (USA). Geol. Soc. Am. Bull. 126, 1047-1067.

[15]

Bryan S.E., Riley T.R., Jerram D.A., Stephens C.J., Leat P.T., 2002. Silicic volcanism:an undervalued component of large igneous provinces and volcanic rifted margins. In: MenziesM.A., KlempererS.L., EbingerC.J., BakerJ. (VolcanicRifted Margins.Eds.), Geol. Soc. Am. Spec. Pap., 362, pp. 99-120.

[16]

Bull K.F., McPhie J.M., 2007. Fiamme textures in volcanic successions: flaming issues of definition and interpretation. J. Volcanol. Geotherm. Res. 164, 205-216.

[17]

Carter H.J., 1852. Geology of the Island of Bombay with a map and plates. J. Bombay Br. Roy. Asiat. Soc., 161-215

[18]

Carter H.J., 1863. Notes on the geology of the islands around Bombay. J. Bombay Br. Roy. Asiat. Soc. 6, 167-182.

[19]

Cassidy M., Manga M., Cashman K., Bachmann B., 2018. Controls on explosive-effusive volcanic eruption styles. Nat. Comm. 9, 2839. https://doi.org/10.1038/s41467-018-05293-3.

[20]

Chayes F., 1963. Relative abundance of intermediate members of the oceanic basalt-trachyte association. J. Geophys. Res. 68, 1519-1534.

[21]

Christiansen E.H., 2005. Contrasting processes in silicic magma chambers: evidence from very large-volume ignimbrites. Geol. Mag. 142, 669-681.

[22]

Christiansen E.H., McCurry M., 2008. Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bull. Volcanol. 70, 251-267.

[23]

Christiansen R.L., Lipman P.W., 1966. Emplacement and thermal history of a rhyolite flow near Fortymile Canyon, southern Nevada. Geol. Soc. Am. Bull. 77, 671-684.

[24]

Clague D.A., 1978. The oceanic basalt-trachyte association: an explanation of the Daly Gap. J. Geol. 86, 739-743.

[25]

Clarke D.B., 2019. The origins of strongly peraluminous granitoid rocks. Can. Mineral. 57, 529-550.

[26]

Cripps J.A., Widdowson M., Spicer R.A., Jolley D.W., 2005. Coastal ecosystem responses to late stage Deccan Trap volcanism: the post K-T boundary (Danian) palynofacies of Mumbai (Bombay), West India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 303-332.

[27]

Daly R.A., 1925. The geology of Ascension Island. Proc. Am. Acad. Art. Sci. 60, 3-80.

[28]

Davidson J., Turner S., Handley H., Macpherson C., Dosseto A., 2007. Amphibole 'sponge' in arc crust? Geology 35, 787-790.

[29]

Dessai A.G., Markwick A., Vaselli P., Downes H., 2004. Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78, 263-290.

[30]

Dingwell D.B., Knoche R., Webb S.L., 1993. The effect of F on the density of haplogranite melt. Am. Mineral. 78, 325-330.

[31]

Dostal J., Dupuy C., Carron J.P., De Kerneizon M.L.G., Maury R.C., 1983. Partition coefficients of trace elements: application to volcanic rocks of St. Vincent, West Indies. Geochim. Cosmochim. Acta 47, 525-533.

[32]

Duraiswami R.A., Jutzeler M., Karve A.V., Gadpallu P., Kale M.G., 2019. Subaqueous effusive and explosive phases of late Deccan volcanism: evidence from Mumbai Islands, India. Arab. J. Geosci. 12, 703. https://doi.org/10.1007/s12517-019-4877-z.

[33]

Ellis B.S., Wolff J.A., Boroughs S., Mark D.F., Starkel W.A., Bonnichsen B., 2013. Rhyolitic volcanism of the central Snake River Plain: a review. Bull. Volcanol. 75, 745. https://doi.org/10.1007/s00445-013-0745-y.

[34]

Ellis B.S., Bachmann O., Wolff J.A., 2014. Cumulate fragments in silicic ignimbrites: the case of the Snake River Plain. Geology 42, 431-434.

[35]

Ellis B.S., Cordonnier B., Rowe M.C., Szymanowski D., Bachmann O., Andrews G.D. M., 2015. Groundmass crystallisation and cooling rates of lava-like ignimbrites: the Grey's Landing ignimbrite, southern Idaho, USA. Bull. Volcanol. 77, 87. https://doi.org/10.1007/s00445-015-0972-5.

[36]

Ewart A., 1963. Petrology and petrogenesis of the Quaternary pumice ash in the Taupo area, New Zealand. J. Petrol. 4, 392-431.

[37]

Fink J.H., 1983. Structure and emplacement of a rhyolitic obsidian flow: Little Glass Mountain, Medicine Lake highland, northern California. Geol. Soc. Am. Bull. 94, 362-380.

[38]

Fisher R.V., Schmincke H.-U., 1984. In:Pyroclastic Rocks. Springer-Verlag, Berlin Heidelberg, p. 472.

[39]

Fujimaki H., Tatsumoto M., Aoki K.I., 1984. Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J. Geophys. Res. 89, 662-672.

[40]

Ganerød M., Torsvik T.H., van Hinsbergen D., Gaina C., Corfu F., Werner S., Owen-Smith T.M., Ashwal L.D., Webb S.J., Hendriks B.W.H., 2011. Palaeoposition of the Seychelles microcontinent in relation to the Deccan Traps and the Plume Generation Zone in Late Cretaceous-Early Palaeogene time. In: Van HinsbergenD.J.J., BuiterS.J.H., TorsvikT.H., GainaC., WebbS.J. (The Formation and Evolution of Africa:Eds.), A Synopsis of 3.8 Ga of Earth History. Geol. Soc. Lond. Spec. Publ. 357, 229-252.

[41]

Geological Survey of India, 1994. Geological Quadrangle Map - Thane. GSI, Kolkata. Giordano, D., Romano, D.B., Dingwell, D.B., Poe, B., Behrens, H., 2004. The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim. Cosmochim. Acta 68, 5159-5168.

[42]

Glazner A.F., Coleman D.S., Bartley J.M., 2008. The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36, 1047-1050.

[43]

Godbole S.M., 1987. In:Geology of Bhiwandi-Bassein Area. Ph.D. thesis, Univ. Pune, Maharashtra, p. 144.

[44]

Govindaraju K., 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostand. Newslett. 18, 1-158.

[45]

Grossenbacher K.A., McDuffie S.M., 1995. Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. J. Volcanol. Geotherm. Res. 69, 95-103.

[46]

Halder M., Paul D., Sensarma S., 2021. Rhyolites in continental mafic large igneous provinces: petrology, geochemistry and petrogenesis. Geosci. Front. 12, 53-80.

[47]

Halder M., Paul D., Yang S., 2023. Origin of silicic rocks of the Deccan Traps continental flood basalt province: inferences from field observations, petrography, and geochemistry. Geochemistry 83, 125958. https://doi.org/10.1016/j.chemer.2023.125958.

[48]

Heiken G., 1974. In:Atlas of Volcanic Ash. Smithsonian Contrib, Earth Sci., p. 101. Henry, C.D., Wolff, J.A., 1992. Distinguishing strongly rheomorphic tuffs from extensive silicic lavas. Bull. Volcanol. 54, 171-186.

[49]

Henry C.D., Price J.G., Rubin J.N., Laubach S.E., 1990. Case study of an extensive silicic lava: the Bracks Rhyolite, Trans-Pecos Texas. J. Volcanol. Geotherm. Res. 43, 113-132.

[50]

Hooper P., Widdowson M., Kelley S., 2010. Tectonic setting and timing of the final Deccan flood basalt eruptions. Geology 38, 839-842.

[51]

Izett G.A., 1981. Volcanic ash beds: recorders of Upper Cenozoic silicic pyroclastic volcanism in the western United States. J. Geophys. Res. 86, 10200-10222.

[52]

Johannes W., Holtz F., 1996. In:Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin, p. 335.

[53]

Kirstein L.A., Hawkesworth C.J., Garland F.G., 2001. Felsic lavas or rheomorphic ignimbrites: is there a chemical distinction? Contrib. Mineral. Petrol. 142, 309-322.

[54]

Krishnamurthy P., 2020. The Deccan volcanic province (DVP), India: a review. J. Geol. Soc. Ind. 96, 9-35.

[55]

Krishnamurthy P., Cox K.G., 1980. A potassium-rich alkalic suite from the Deccan Traps, Rajpipla, India. Contrib. Mineral. Petrol. 73, 179-189.

[56]

Krishnan M.S., 1930. Granophyric trachyte from Salsette Island, Bombay. Rec. Geol. Surv. Ind. 62, 371-376.

[57]

Kshirsagar P., Sheth H.C., Seaman S., Shaikh B., Mohite P., Gurav T., Chandrasekharam D., 2012. Spherulites and thundereggs from pitchstones of the Deccan Traps: geology, petrochemistry, and emplacement environments. Bull. Volcanol. 74, 559-577.

[58]

Kumar P., Chaubey A.K., 2019. Extension of flood basalt on the northwestern continental margin of India. J. Earth Syst. Sci. 128, 81. https://doi.org/10.1007/s12040-019-1089-6.

[59]

Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin P., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27, 745-750.

[60]

Le Maitre R.W., 1976. Some problems of the projection of chemical data into mineralogical classifications. Contrib. Mineral. Petrol. 56, 181-189.

[61]

Lightfoot P.C., Hawkesworth C.J., Sethna S.F., 1987. Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd, and Pb isotope and trace element evidence. Contrib. Mineral. Petrol. 95, 44-54.

[62]

Magnall N., James M.R., Tuffen H., Vye-Brown C., 2017. Emplacing a coolinglimited rhyolite lava flow: similarities with basaltic lava flows. Front. Earth Sci. 5, 44. https://doi.org/10.3389/feart.2017.00044.

[63]

Manley C.R., 1992. Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modelling results. J. Volcanol. Geotherm. Res. 53, 27-46.

[64]

Marxer F., Ulmer P., Müntener O., 2023. Ascent-driven differentiation: a mechanism to keep arc magmas metaluminous? Contrib. Mineral. Petrol. 178, 51. https://doi.org/10.1007/s00410-023-02035-7.

[65]

Mathur K.K., Naidu P.R.J., 1932. Volcanic Activity of the Coastal Tracts of Bombay, Salsette and Bassein. Malaviya Commer. Banaras Hindu Univ., pp. 787-805.

[66]

McPhie J., Doyle M., Allen R., 1993. In:Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks. CODES. Univ Tasmania, p. 196.

[67]

Merlet C., 1994. An accurate computer correction program for quantitative electron probe microanalysis. Microchim. Acta 114, 363-376.

[68]

Middlemost A.E.K., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chem. Geol. 77, 19-26.

[69]

Misra K.S., 1999. Deccan volcanics in Saurashtra and Kutch, Gujarat, India. In: SubbaraoK.V. (Ed.), Deccan Volcanic Province. Geol. Soc. Ind. Mem. 43, 325-334.

[70]

Naik A., Sheth H., Sheikh J.M., Kumar A., 2021a. Extremely high-grade, lava-like rhyolitic ignimbrites at Osham Hill, Saurashtra, northwestern Deccan Traps: stratigraphy, structures, textures, and physical volcanology. J. Volcanol. Geotherm. Res. 419, 107389. https://doi.org/10.1016/j.jvolgeores.2021.107389.

[71]

Naik A., Sheikh J.M., Sheth H., Samant H., D'Souza S., 2021b. Diverse late-stage (≤ 62.5 Ma) Deccan volcanism and plutonism in the Thane-Vasai region, Panvel flexure zone, western Indian rifted margin. J. Earth Syst. Sci. 130, 152. https://doi.org/10.1007/s12040-021-01654-7.

[72]

Naik A., Sheth H., Kumar A., Sheikh J.M., 2023. The physical volcanology of largescale effusive and explosive silicic eruptions in southeastern Saurashtra, Deccan Traps. Geol. Mag. 160, 1395-1416.

[73]

Németh K., Martin U., 2007. In:Practical Volcanology. Geol. Inst, Hungary, Budapest, p. 221.

[74]

Pande K., Yatheesh V., Sheth H., 2017. 40Ar/39Ar dating of the Mumbai tholeiites and Panvel flexure: intense 62.5 Ma onshore-offshore Deccan magmatism during India-Laxmi Ridge-Seychelles breakup. Geophys. J. Int. 210, 1160-1170.

[75]

Pankhurst M.J., Schaefer B.F., Betts P.G., 2011. Geodynamics of rapid voluminous felsic magmatism through time. Lithos 123, 92-101.

[76]

Parker D.F., 2019. Generation of alkalic flood rhyolite: insights from evolution of the Paisano volcano, Davis mountains, Trans-Pecos Texas, U.S.A. J. Volcanol. Geotherm. Res. 374, 120-130.

[77]

Pearce J.A., Norry M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69, 33-47.

[78]

Quane S.L., Russell J.K., 2005. Ranking welding intensity in pyroclastic deposits. Bull. Volcanol. 67, 129-143.

[79]

Rollinson H.R., 1993. In: Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, p. 352.

[80]

Seaman S.J., Darby Dyar M., Marinkovic N., 2009. The effects of heterogeneity in magma water concentration on the development of flow banding and spherulites in rhyolitic lava. J. Volcanol. Geotherm. Res. 183, 157-169.

[81]

Self S., 2006. The effects and consequences of very large explosive volcanic eruptions. Phil. Trans. Roy. Soc. Lond. (Math. Phys. Eng. Sci.) 364, 2073-2097.

[82]

Sethna S.F., 1999. Geology of Mumbai and surrounding areas and its position in the Deccan volcanic stratigraphy, India. J. Geol. Soc. Ind. 53, 359-365.

[83]

Sethna S.F., Battiwala H.K., 1974. Metasomatised basalt xenoliths in the trachyte of Manori-Gorai, and their significance. Gold. Jub. Vol., Geol. Min. Met. Soc. Ind., pp. 337-346.

[84]

Sethna S.F., Battiwala H.K., 1976. Hybridisation effects in contemporaneous eruption of trachytic and basaltic magmas in Salsette, Bombay. Neu. Jahrb. Miner. 11, 495-507.

[85]

Sethna S.F., Battiwala H.K., 1977. Chemical classification of the intermediate and acid rocks (Deccan Trap) of Salsette Island, Bombay. J. Geol. Soc. Ind. 18, 323-330.

[86]

Sethna S.F., Javeri P., 1995. Trachyte from the coastal Deccan Trap at Sutrakar, Maharashtra. J. Geol. Soc. Ind. 46, 317-323.

[87]

Shand S.J., 1927. In: Eruptive Rocks: Their Genesis, Composition, Classification and their Relationship to Ore Deposits, with A Chapter on Meteorites. Thomas Murby & Co., New York, p. 360.

[88]

Sharma R.K., Pandit M.K., 1998. Ignimbrite deposits from north of Mumbai in western part of Deccan flood basalt province, India. J. Geol. Soc. Ind. 51, 813-815.

[89]

Sheikh J.M., Sheth H., Naik A., Keluskar T., 2020a. Widespread rheomorphic and lava-like silicic ignimbrites overlying flood basalts in the northwestern and northern Deccan Traps. Bull. Volcanol. 82, 41. https://doi.org/10.1007/s00445-020-01381-9.

[90]

Sheikh J.M., Sheth H., Naik A., Keluskar T., 2020b. Physical volcanology of the Pavagadh rhyolites, northern Deccan Traps: Stratigraphic, structural, and textural record of explosive and effusive eruptions. J. Volcanol. Geotherm. Res. 404, 107024. https://doi.org/10.1016/j.jvolgeores.2020.107024.

[91]

Shellnutt J.G., Yeh M.-W., Suga K., Lee T.-Y., Lee H.-Y., Lin T.-H., 2017. Temporal and structural evolution of the Early Palaeogene rocks of the Seychelles microcontinent. Nat. Sci. Rep. 7, 179. https://doi.org/10.1038/s41598-017-00248-y.

[92]

Sheth H.C., Pande K., 2014. Geological and 40Ar/39Ar age constraints on late-stage Deccan rhyolitic volcanism, inter-volcanic sedimentation, and the Panvel flexure from the Dongri area, Mumbai. J. Asian Earth Sci. 84, 167-175.

[93]

Sheth H.C., Zellmer G.F., Demonterova E.I., Ivanov A.V., Kumar R., Patel R.K., 2014. The Deccan tholeiite lavas and dykes of Ghatkopar-Powai area, Mumbai, Panvel flexure zone: geochemistry, stratigraphic status, and tectonic significance. J. Asian Earth Sci. 84, 69-82.

[94]

Sheth H., Naik A., Sheikh J.M., Kumar A., 2022. Giant (30 km-diameter) silicic caldera of K/Pg boundary age in the northwestern Deccan Traps: the Alech Hills, Saurashtra. Int. J. Earth Sci. 111, 379-399.

[95]

Simões M.S., Sommer C.A., Lima E.F., Rossetti L.M.M., Besser M.L., 2023. Silicic lavas with no basal breccia: origin of the thinly jointed basal facies of low-Ti dacites in the Paraná-Etendeka Large Igneous Province. Bull. Volcanol. 85, 16. https://doi.org/10.1007/s00445-023-01631-6.

[96]

Singh S.D., 2000. Petrography and clay mineralogy of intertrappean beds of Mumbai. India. J. Geol. Soc. Ind. 55, 275-288.

[97]

Smith D.B., 1998. Data compilation for USGS Reference Material Granite G-2. U. S. Geol. Surv. Open File Rep.

[98]

Smith J.V., 1996. Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, eastern Australia. J. Volcanol. Geotherm. Res. 72, 217-223.

[99]

Smith J.V., 2002. Structural analysis of flow-related textures in lavas. Earth-Sci. Rev. 57, 279-297.

[100]

Smith R.L., Bailey R.A., 1966. The Bandelier Tuff: a study of ash-flow eruption cycles from zoned magma chambers. Bull. Volcanol. 29, 83-103.

[101]

Subba Rao S., 1971. Petrogenesis of acid rocks of the Deccan Traps. Bull. Volcanol. 35, 983-997.

[102]

Sukheswala R.N., 1953. Notes on the field occurrence and petrography of the rocks of the Bombay Island, Bombay. Trans. Min. Geol. Met. Inst. Ind. 50, 101-115.

[103]

Sukheswala R.N., 1974. Gradation of tholeiitic Deccan basalt into spilite, Bombay, India. In: AmstutzG.C. (Ed.), Spilites and Spilitic Rocks. Springer Verlag, Heidelberg, pp. 229-250.

[104]

Sukheswala R.N., Poldervaart A., 1958. Deccan basalts of the Bombay area, India. Geol. Soc. Am. Bull. 69, 1475-1494.

[105]

Sukheswala R.N., Sethna S.F., 1962. Deccan Traps and associated rocks of Bassein area. J. Geol. Soc. Ind. 3, 125-146.

[106]

Sun S.-s., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: SaundersA.D., NorryM.J. (Magmatismin the Ocean Basins.Eds.), Geol. Soc. Spec. Publ. 42, pp. 313-345.

[107]

Tyrrell G.W., 1926. In:The Principles of Petrology. Methuen, London, p. 349.

[108]

Verma S.P., Torres-Alvarado I.S., Sotelo-Rodriguez Z.T., 2002. SINCLAS: standard igneous norm and volcanic rock classification system. Comp. Geosci. 28, 711-715.

[109]

Vernon R.H., 2018. In: APractical Guide to Rock Microstructure.second ed.ed. Cambridge Univ. Press, Cambridge, p. 431.

[110]

Vielzeuf D., Holloway J.R., 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol. 98, 257-276.

[111]

Wilson S.A., 1998. Data compilation for USGS Reference Material GSP-2, Granodiorite Silver Plume, Colorado. U.S. Geol. Surv. Bull, Reston, USA.

[112]

Wilson C.J.N., Hildreth W., 1997. The Bishop tuff: new insights from eruptive stratigraphy. J. Geol. 105, 407-439.

[113]

Wolff J.A., Wright J.V., 1981. Rheomorphism of welded tuffs. J. Volcanol. Geotherm. Res. 10, 13-34.

[114]

Yatheesh V., 2020. Structure and tectonics of the continental margins of India and the adjacent deep ocean basins: current status of knowledge and some unresolved problems. Episodes 43, 586-608.

[115]

Zellmer G.F., Sheth H.C., Iizuka Y., Lai Y.-J., 2012. Remobilisation of granitoid rocks through mafic recharge: evidence from basalt-trachyte mingling and hybridisation in the Manori-Gorai area, Mumbai, Deccan Traps. Bull. Volcanol. 74, 47-66.

[116]

Zimanowski B., 1998. Phreatomagmatic explosions. In: FreundtA., RosiM. (FromMagma to Tephra.Eds.), Elsevier, Amsterdam, pp. 25-53.

AI Summary AI Mindmap
PDF

696

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/