Seasonal effects on groundwater fluoride and evaluating health hazards: In-situ remediation via managed aquifer recharge

D. Karunanidhi , Meera Rajan , Priyadarsi D. Roy , T. Subramani

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102102

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102102 DOI: 10.1016/j.gsf.2025.102102

Seasonal effects on groundwater fluoride and evaluating health hazards: In-situ remediation via managed aquifer recharge

Author information +
History +
PDF

Abstract

This research examines the hard-rock aquifer system within the Nagavathi River Basin (NRB) South India, by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon (PRM) and post-monsoon (POM) periods. Seasonal variations significantly influence the groundwater quality, particularly fluoride (F) concentrations, which can fluctuate due to changes in recharge, evaporation, and anthropogenic activities. This study assesses the dynamics of F levels in PRM and POM seasons, and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations (MCS). Groundwater in the study area exhibits alkaline pH, with NaCl and Ca-Na-HCO3 facies increasing in the POM season due to intensified ion exchange and rock-water interactions, as indicated in Piper and Gibb's diagrams. Correlation and dendrogram analyses indicate that F contamination is from geogenic and anthropogenic sources. F levels exceed the WHO limit (1.5 mg/L) in 51 PRM and 28 POM samples, affecting 371.74 km2 and 203.05 km2, respectively. Geochemical processes, including mineral weathering, cation exchange, evaporation, and dilution, are identified through CAI I & II. Health risk assessments reveal that HQ values >1 in 78% of children, 73% of teens, and 68% of adults during PRM, decreasing to 45%, 40%, and 38%, respectively, in POM. MCS show maximum HQ values of 5.67 (PRM) and 4.73 (POM) in children, with all age groups facing significant risks from fluoride ingestion. Managed Aquifer Recharge (MAR) is recommended in this study to minimize F contamination, ensuring safe drinking water for the community.

Keywords

Fluoride / Seasonal fluctuations / Geochemical processes / Geogenic sources / Managed aquifer recharge

Cite this article

Download citation ▾
D. Karunanidhi, Meera Rajan, Priyadarsi D. Roy, T. Subramani. Seasonal effects on groundwater fluoride and evaluating health hazards: In-situ remediation via managed aquifer recharge. Geoscience Frontiers, 2025, 16(5): 102102 DOI:10.1016/j.gsf.2025.102102

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

D. Karunanidhi: Writing - review & editing, Writing - original draft, Supervision, Methodology, Investigation, Formal analysis, Data curation. Meera Rajan: Writing - original draft, Software, For-mal analysis, Data curation. Priyadarsi D. Roy: Writing - review & editing, Validation. T. Subramani: Writing - review & editing, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102102.

References

[1]

Ahmad S., Umar R., Ahmad I., 2022a. Assessment of groundwater quality using entropy-weighted quality index (EWQI) and multivariate statistical techniques in central ganga plain. India. Environ. Dev. Sustain. 26 (1), 1615-1643. https://doi.org/10.1007/s10668-022-02776-8.

[2]

Ahmad S., Singh R., Arfin T., Neeti K., 2022b. Fluoride contamination, consequences and removal techniques in water: a review. Environ. Sci.: Adv. 1 (5), 620-661. https://doi.org/10.1039/d1va00039j.

[3]

Alam M.F., Pavelic P., Villholth K.G., Sikka A., Pande S., 2022. Impact of high-density managed aquifer recharge implementation on groundwater storage, food production and resilience: A case from Gujarat, India. J. Hydrol. Reg. Stud. 44, 101224. https://doi.org/10.1016/j.ejrh.2022.101224.

[4]

Al-Hashimi O., Hashim K., Loffill E., Marolt Cˇebašek T., Nakouti I., Faisal A.A., Al-Ansari N., 2021. A comprehensive review for groundwater contamination and remediation: occurrence, migration and adsorption modelling. Molecules 26 (19), 5913. https://doi.org/10.3390/molecules26195913.

[5]

Ali S., Agarwal M.B., Verma S., Islam R., Deolia R.K., Singh S., Kumar J., Mohammadi A.A., Gupta M.K., Fattahi M., Nguyen P.U., 2023a. Variability of groundwater fluoride and its proportionate risk quantification via Monte Carlo simulation in rural and urban areas of Agra district. India. Sci. Rep. 13 (1), 18971. https://doi.org/10.1038/s41598-023-46197-7.

[6]

Ali S., Ali H., Pakdel M., Askari S.G., Mohammadi A.A., Rezania S., 2021. Spatial analysis and probabilistic risk assessment of exposure to fluoride in drinking water using GIS and Monte Carlo simulation. Environ. Sci. Pollut. Res. 29 (4), 5881-5890. https://doi.org/10.1007/s11356-021-16075-8.

[7]

Ali S., Shekhar S., Kumar R., Brindha K., Li P., 2023b. Genesis and mobilization of fluoride in groundwater of India: Statistical evaluation, health impacts, and potential remedies. J. Hazard. Mater. Adv. 11, 100352. https://doi.org/10.1016/j.hazadv.2023.100352.

[8]

APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Works Association/ Water Environment Federation, Washington.

[9]

Aravinthasamy P., Karunanidhi D., Subramani T., Srinivasamoorthy K., Anand B., 2020a. Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin, South India: implication on human health. Environ. Geochem. Health 42, 1937-1963. https://doi.org/10.1007/s10653-019-00452-x.

[10]

Aravinthasamy P., Karunanidhi D., Subramani T., Anand B., Roy P.D., Srinivasamoorthy K., 2020b. Fluoride contamination in groundwater of the Shanmuganadhi River basin (south India) and its association with other chemical constituents using geographical information system and multivariate statistics. Geochemistry 80 (4), 125555. https://doi.org/10.1016/j.chemer.2019.125555.

[11]

Aziz H., Hansell Gonzalez-Raymat P.D., Gudavalli R., 2023. Evaluating Spatial Distribution of Contaminants in the Savannah River Site F-Area using ArcGIS Interpolation Methods. Student Summer Internship Technical Report, DOE-FIU Science & Technology Workforce Development Program. Florida International University.

[12]

Bazeli J., Ghalehaskar S., Morovati M., Soleimani H., Masoumi S., Rahmani Sani A., Rastegar A., 2022. Health risk assessment techniques to evaluate non-carcinogenic human health risk due to fluoride, nitrite and nitrate using Monte Carlo simulation and sensitivity analysis in Groundwater of Khaf County, Iran. Int. J. Environ. Anal. Chem. 102 (8), 1793-1813. https://doi.org/10.1080/03067319.2020.1743280.

[13]

Biswas T., Pal S.C., Saha A., Ruidas D., 2023. Arsenic and fluoride exposure in drinking water caused human health risk in coastal groundwater aquifers. Environ. Res. 238, 117257. https://doi.org/10.1016/j.envres.2023.117257.

[14]

Cao H., Xie X., Wang Y., Liu H., 2022. Predicting geogenic groundwater fluoride contamination throughout China. J. Environ. Sci. 115, 140-148. https://doi.org/10.1016/j.jes.2021.07.005.

[15]

CGWB report, 2009. South Eastern Coastal Region Chennai. District groundwater brochure, Dharmapuri district, Tamil Nadu, India.

[16]

Chaudhuri R., Sahoo S., Debsarkar A., Hazra S., 2024. Fluoride contamination in groundwater—a review. In: ShitP.K., DuttaD., DasT.K., DasS., BhuniaG.S., DasP., SahooS. (Geospatial Practices in Natural Resources Management.Eds.), Environmental Science and Engineering. Springer, Cham, pp. 331-354. https://doi.org/10.1007/978-3-031-38004-4_15.

[17]

Choubisa S.L., 2022. The diagnosis and prevention of fluorosis in humans. J. Biomed. Res. Environ. Sci. 3 (3), 264-267 https://dx.doi.org/10.37871/jbres1431.

[18]

Choubisa S.L., 2024. A brief review of fluoride-induced bone disease skeletal fluorosis in humans and its prevention. J. Pharm. Pharmacol. Res. 7 (8), 1-7. https://doi.org/10.31579/2688-7517/200.

[19]

Dar F.A., Kurella S., 2023. Fluoride in drinking water: An in-depth analysis of its prevalence, health effects, advances in detection and treatment. Mater. Today Proc. 102, 349-360. https://doi.org/10.1016/j.matpr.2023.05.645.

[20]

Derdour A., Mahamat Ali M.M., Chabane Sari S.M., 2020. Evaluation of the quality of groundwater for its appropriateness for drinking purposes in the watershed of Naâma, SW of Algeria, by using water quality index (WQI). SN Appl. Sci. 2, 1-14. https://doi.org/10.1007/s42452-020-03768-x.

[21]

Deshmukh M.M., Elbeltagi A., Kouadri S., 2022. Climate change impact on groundwater resources in semi-arid regions. In: PanneerselvamB., PandeC. B., MunirajK., BalasubramanianA., RavichandranN. (Climate Change Impact on Groundwater Resources:Eds.), Human Health Risk Assessment in Arid and Semi-arid Regions. Springer, Cham, pp. 9-23. https://doi.org/10.1007/978-3-031-04707-7_2.

[22]

Elumalai V., Rajmohan N., Sithole B., Li P., Uthandi S., van Tol J., 2023. Geochemical evolution and the processes controlling groundwater chemistry using ionic ratios, geochemical modelling and chemometric analysis in uMhlathuze catchment, KwaZulu-Natal South Africa. Chemosphere 312, 137179. https://doi.org/10.1016/j.chemosphere.2022.137179.

[23]

Ganguly S., Ganguly S., 2021. Implementation of managed aquifer recharge techniques in India. Curr. Sci. 121 (5), 641-650. https://doi.org/10.18520/cs/v121/i5/641-650.

[24]

Ganyaglo S.Y., Gibrilla A., Teye E.M., Owusu-Ansah E.D.J., Tettey S., Diabene P.Y., Asimah S., 2019. Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. Chemosphere233,862-872.https://doi.org/10.1016/j.chemosphere.2019.05.276.

[25]

Gao Y., Chen J., Qian H., Wang H., Ren W., Qu W., 2022. Hydrogeochemical characteristics and processes of groundwater in an over 2260-year irrigation district: A comparison between irrigated and nonirrigated areas. J. Hydrol. 606, 127437. https://doi.org/10.1016/j.jhydrol.2022.127437.

[26]

Ghaemi Z., Noshadi M., 2024. Evaluation of fluoride exposure using disability-adjusted life years and health risk assessment in south-western Iran: A novel Monte Carlo simulation. Ecotoxicol. Environ. Saf. 282, 116705. https://doi.org/10.1016/j.ecoenv.2024.116705.

[27]

Gibbs R.J., 1970. Mechanisms controlling world water chemistry. Science 170, 795-840.

[28]

Gowrisankar G., Jagadeshan G., Elango L., 2017. Managed aquifer recharge by a check dam to improve the quality of fluoride-rich groundwater: a case study from southern India. Environ. Monit. Assess. 189 (4), 200. https://doi.org/10.1007/s10661-017-5910-x.

[29]

GSI, 1995. Geological and Mineral Map of Tamil Nadu and Pondicherry. scale vol. 1, p.500,000.

[30]

GSI, 2018. Bhukosh. Geological Survey of India.

[31]

Gugulothu S., Subbarao N., Das R., Dhakate R., 2022. Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India. Appl. Water Sci. 12 (6), 142. https://doi.org/10.1007/s13201-022-01583-w.

[32]

Hossain M., Patra P.K., 2019. Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling. Ecotoxicol. Environ. Saf. 189, 110038. https://doi.org/10.1016/j.ecoenv.2019.110038.

[33]

Jagadeshan G., Kalpana L., Elango L., 2015. Hydrogeochemistry of high fluoride groundwater in hard rock aquifer in a part of Dharmapuri district, Tamil Nadu, India.Geochem. Int.53,554-564.https://doi.org/10.1134/s0016702915060038.

[34]

Jha S.K., Mishra V.K., Verma C.L., Sharma N., Sikka A.K., Pavelic P., Sharma B.R., 2021. Groundwater quality concern for wider adaptability of novel modes of managed aquifer recharge (MAR) in the Ganges Basin, India. Agric. Water Manag. 246, 106659. https://doi.org/10.1016/j.agwat.2020.106659.

[35]

Kalpana L., Brindha K., Elango L., 2019. FIMAR: A new Fluoride Index for identification of sites to mitigate geogenic contamination by managed aquifer recharge. Chemosphere220,381-390.https://doi.org/10.1016/j.chemosphere.2018.12.084.

[36]

Khyalia P., Duhan S.S., Laura J.S., Nandal M., 2024. A comprehensive analysis of fluoride contamination in groundwater of rural area with special focus on India. In: MadhavS., IzahS.C., van HullebuschE.D., SrivastavA.L. (Water Resources Management for Rural Development:Eds.), Challenges and Mitigation. Elsevier, pp. 201-212. https://doi.org/10.1016/B978-0-443-18778-0.00008-8.

[37]

Karthikeyan P., Vennila G., Venkatachalapathy R., Subramani T., Prakash R., Aswini M.K., 2018. Assessment of heavy metals in the surface sediments of the Emerald Lake using of spatial distribution and multivariate techniques. Environ. Monit. Assess. 190, 668. https://doi.org/10.1007/s10661-018-7037-0.

[38]

Karunanidhi D., Aravinthasamy P., Deepali M., Subramani T., Roy P.D., 2020a. The effects of geochemical processes on groundwater chemistry and the health risks associated with fluoride intake in a semi-arid region of South India. RSC Adv. 10 (8), 4840-4859. https://doi.org/10.1039/c9ra10332e.

[39]

Karunanidhi D., Aravinthasamy P., Subramani T., Deepak Kumar Raj, S., 2021b. Investigation of health risks related with multipath entry of groundwater nitrate using Sobol sensitivity indicators in an urban-industrial sector of south India. Environ. Res. 200, 111726. https://doi.org/10.1016/j.envres.2021.111726.

[40]

Karunanidhi D., Aravinthasamy P., Subramani T., Roy P.D., Srinivasamoorthy K., 2019. Risk of Fluoride-Rich groundwater on human health: Remediation through managed aquifer recharge in a hard rock terrain South India. Nat. Resour. Res. 29 (4), 2369-2395. https://doi.org/10.1007/s11053-019-09592-4.

[41]

Karunanidhi D., Aravinthasamy P., Subramani T., Roy P.D., Srinivasamoorthy K., 2020b. Risk of fluoride-rich groundwater on human health: remediation through managed aquifer recharge in a hard rock terrain South India. Nat. Resour. Res. 29 (4), 2369-2395. https://doi.org/10.1007/s11053-019-09592-4.

[42]

Karunanidhi D., Aravinthasamy P., Deepali M., Subramani T., Shankar K., 2021a. Groundwater pollution and human health risks in an industrialized region of southern India: Impacts of the COVID-19 lockdown and the monsoon seasonal cycles. Arch. Environ. Contam. Toxicol. 80 (1), 259-276. https://doi.org/10.1007/s00244-020-00797-w.

[43]

Karunanidhi D., Aravinthasamy P., Subramani T., Balakumar K., Chandran N.S., 2020c. Health threats for the inhabitants of a textile hub (Tiruppur region) in southern India due to multipath entry of fluoride ions from groundwater. Ecotoxicol. Environ. Saf. 204, 111071. https://doi.org/10.1016/j.ecoenv.2020.111071.

[44]

Karunanidhi D., Raj M.R.H., Roy P.D., Subramani T., 2024. Health hazards from perchlorate enriched groundwater of a semi-arid river basin of south India and suggesting in-situ remediation through Managed Aquifer Recharge. J. Hazard. Mater. 480, 136231. https://doi.org/10.1016/j.jhazmat.2024.136231.

[45]

Kavisri M., Moovendhan M., 2024. Assessment of Groundwater Quality and Fluoride Contamination in Dharmapuri and Krishnagiri Districts, Tamil Nadu, India. Environ. Qual. Manage. 34 (2), e70002. https://doi.org/10.1002/tqem.70002.

[46]

Khan F., Krishnaraj S., Raja P., Selvaraj G., Cheelil R., 2020. Impact of hydrogeochemical processes and its evolution in controlling groundwater chemistry along the east coast of Tamil Nadu and Puducherry, India. Environ. Sci. Pollut. Res. 28 (15), 18567-18588. https://doi.org/10.1007/s11356-020-10912-y.

[47]

Kom K.P., Gurugnanam B., Bairavi S., 2022. Non-carcinogenic health risk assessment of nitrate and fluoride contamination in the groundwater of Noyyal basin, India. Geodesy Geodyn. 13 (6), 619-631. https://doi.org/10.1016/j.geog.2022.04.003.

[48]

Kom K.P., Gurugnanam B., Bairavi S., Chidambaram S., 2023. Sources and geochemistry of high fluoride groundwater in hard rock aquifer of the semi-arid region. A special focus on human health risk assessment. Total Environ. Res. Themes 5, 100026. https://doi.org/10.1016/j.totert.2023.100026.

[49]

Kumar M., Goswami R., Patel A.K., Srivastava M., Das N., 2020. Scenario, perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: a review. Chemosphere 249, 126126. https://doi.org/10.1016/j.chemosphere.2020.126126.

[50]

Li J., Wang Y., Zhu C., Xue X., Qian K., Xie X., Wang Y., 2020. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain. Sci. Total Environ. 730, 138877. https://doi.org/10.1016/j.scitotenv.2020.138877.

[51]

Li L., Ma L., Pan Z., Xu J., Chen F., Yang C., Yin Y., 2025. Spatial distribution and health risk assessment of fluoride in groundwater in the oasis of the Hotan river basin in Xinjiang, China. Sci. Rep. 15 (1), 11630. https://doi.org/10.1038/ s41598-025-96583-6.

[52]

Liu J., Peng Y., Li C., Gao Z., Chen S., 2020. A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China. Ecotoxicol. Environ. Saf. 207, 111512. https://doi.org/10.1016/j.ecoenv.2020.111512.

[53]

Manikandan E.,Rajmohan N, Anbazhagan S., 2020. Monsoon impact on groundwater chemistry and geochemical processes in the shallow hard rock aquifer. Catena 195, 104766. https://doi.org/10.1016/j.catena.2020.104766.

[54]

Marghade D., Malpe D.B., Subba Rao N., Sunitha B., 2020. Geochemical assessment of fluoride enriched groundwater and health implications from a part of Yavtmal District, India. Hum. Ecol. Risk Assess. Int. J. 26 (3), 673-694. https://doi.org/10.1080/10807039.2018.1528862.

[55]

Marghade D., Malpe D.B., Subba Rao N., 2021. Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. Environ. Geochem. Health 43, 683-703. https://doi.org/10.1007/s10653-019-00478-1.

[56]

Mianeh H.Y., Amiri L., Jafari A., Nourozi N., 2025. Health risk assessment via Monte Carlo simulation and sensitivity analysis for fluoride and nitrate content in bottled waters consumed in Kermanshah city, Iran. Sci. Rep. 15 (1), 5008. https://doi.org/10.1038/s41598-025-89439-6.

[57]

Mukherjee I., Singh U.K., 2019. Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of east India. Microchem. J. 152, 104304. https://doi.org/10.1016/j.microc.2019.104304.

[58]

Munna K., Guhey R., Jhariya D., 2019. Hydrogeochemistry of high fluoride groundwater to understand the suitability of groundwater for drinking and irrigation purposes in Granulite Belt part of Bhopalpatnam area, Bijapur District, Chhattisgarh, India. J. Geol. Soc. India 94 (3), 309-318. https://doi.org/10.1007/s12594-019-1311-9.

[59]

Naderi M., Jahanshahi R., Dehbandi R., 2020. Two distinct mechanisms of fluoride enrichment and associated health risk in springs' water near an inactive volcano, southeast Iran. Ecotoxicol. Environ. Saf. 195, 110503. https://doi.org/10.1016/j.ecoenv.2020.110503.

[60]

Obeidatt A., Alawneh M., 2019. Hydrochemistry and Groundwater Quality Assessment in Mafraq Province, Jordan. OALib 06 (04), 1-10. https://doi.org/10.4236/oalib.1105365.

[61]

Panneerselvam B., Muniraj K., Duraisamy K., Pande C., Karuppannan S., Thomas M., 2022. An integrated approach to explore the suitability of nitrate-contaminated groundwater for drinking purposes in a semiarid region of India. Environ. Geochem. Health 45 (3), 647-663. https://doi.org/10.1007/s10653-022-01237-5.

[62]

Palanisamy A., Karunanidhi D., Subramani T., Roy P.D., 2020. Demarcation of groundwater quality domains using GIS for best agricultural practices in the drought prone Shanmuganadhi River basin of South India. Environ. Sci. Pollut. Res. 28, 18423-18435. https://doi.org/10.1007/s11356-020-08518-5.

[63]

Piper A.M., 1944. A graphic procedure in the geochemical interpretation of water-analyses. Eos 25 (6), 914-928.

[64]

Qiu H., Gui H., Fang P., Li G., 2021. Groundwater pollution and human health risk based on Monte Carlo simulation in a typical mining area in Northern Anhui Province, China. Int. J. Coal Sci. Technol. 8 (5), 1118-1129. https://doi.org/10.1007/s40789-021-00446-0.

[65]

Rajan M., Karunanidhi D., Subramani T., Preethi B., 2024. Evaluation of fluoride contamination in groundwater and its non-carcinogenic health hazards in a drought-prone river basin of South India. Phys. Chem. Earth 136, 103714. https://doi.org/10.1016/j.pce.2024.103714.

[66]

Rajan M., Karunanidhi D., Gurugnanam B., Subramani T., 2025. Assessment of groundwater suitability for drinking and irrigation purposes with probable health threats in a semiarid river basin of South India. Water Environ. Res 97 (2). https://doi.org/10.1002/wer.70011.

[67]

Ramalingam S., Panneerselvam B., Kaliappan S.P., 2022. Effect of high nitrate contamination of groundwater on human health and water quality index in semi-arid region, South India. South India. Arab. J. Geosci. 15 (3), 242. https://doi.org/10.1007/s12517-022-09553-x.

[68]

Rao N.S., Ravindra B., Wu J., 2020. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India. Hum. Ecol. Risk Assess. Int. J. 26 (9), 2316-2348. https://doi.org/10.1080/10807039.2020.1741338.

[69]

Ren X., Li P., He X., Su F., Elumalai V., 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Arch. Environ. Contam. Toxicol. 80, 74-91.https://doi.org/10.1007/s00244-020-00772-5.

[70]

Ribinu S., Prakash P., Khan A.F., Bhaskar N.P., Arunkumar K., 2022. Hydrogeochemical characteristics of groundwater in Thoothapuzha River Basin, Kerala, South India. Total Environ. Res. Themes 5, 100021. https://doi.org/10.1016/j.totert.2022.100021.

[71]

Saha S., Reza A.H.M.S., Roy M.K., 2019. Hydrochemical evaluation of groundwater quality of the Tista floodplain, Rangpur, Bangladesh. Appl. Water Sci. 9, 1-12. https://doi.org/10.1007/S13201-019-1085-7.

[72]

Sahu S., Gogoi U., Nayak N., 2020. Groundwater solute chemistry, hydrogeochemical processes and fluoride contamination in phreatic aquifer of Odisha, India. Geosci. Front. 12 (3), 101093. https://doi.org/10.1016/j.gsf.2020.10.001.

[73]

Samal A.K., Mishra P.K., Biswas A., 2020. Assessment of origin and distribution of fluoride contamination in groundwater using an isotopic signature from a part of the Indo-Gangetic Plain (IGP), India. HydroResearch 3, 75-84. https://doi.org/10.1016/J.HYDRES.2020.05.001.

[74]

Schöeller H., 1965. Geochemistry of Groundwater. Groundwater Studies-An International Guide for Research and Practice. UNESCO, Chapter 15, Paris, pp. 1-18.

[75]

Selvaganapathi R., Sivaprakasam V., Sathyanarayanan B., Balamurugan P., Das S., Sathiyamoorthy G., 2023. Evaluating hydrogeochemical controls and noncarcinogenic health risk assessment of fluoride concentration in groundwater of Palacode and Pennagaram taluk, Dharmapuri district, Tamil Nadu, India. Environ. Monit. Assess. 195 (12), 1472. https://doi.org/10.1007/s10661-023-12082-z.

[76]

Shaji E., Sarath K.V., Santosh M., Krishnaprasad P.K., Arya B.K., Babu M.S., 2024. Fluoride contamination in groundwater: A global review of the status, processes, challenges, and remedial measures. Geosci. Front. 15 (2), 101734.

[77]

Sharma M.K., Kumar M., 2020. Sulphate contamination in groundwater and its remediation: an overview. Environ. Monit. Assess. 192, 74. https://doi.org/10.1007/s10661-019-8051-6.

[78]

Shubo T., Fernandes L., Montenegro S.G., 2020. An overview of managed aquifer recharge in Brazil. Water 12 (4), 1072. https://doi.org/10.3390/w12041072.

[79]

Singh S.N., Hanna V.M.P.M., 2025. Managed aquifer recharge system in Gujarat region: a review. Plant Archives 25, 517-526 https://doi.org/10.51470/PLANTARCHIVES.2025.v25.SP.ICTPAIRS-073.

[80]

Skórka-Majewicz M., Goschorska M., Zwierełło W., Baranowska-Bosiacka I., Styburski D., Kapczuk P., Gutowska I., 2020. Effect of fluoride on endocrine tissues and their secretory functions-review. Chemosphere 260, 127565.

[81]

Soleimani H., Nasri O., Ghoochani M., Azhdarpoor A., Dehghani M., Radfard M., Darvishmotevalli M., Oskoei V., Heydari M., 2022a. Groundwater quality evaluation and risk assessment of nitrate using monte carlo simulation and sensitivity analysis in rural areas of Divandarreh County, Kurdistan province, Iran. Int. J. Environ. Anal. Chem. 102 (10), 2213-2231. https://doi.org/10.1080/03067319.2020.1751147.

[82]

Soleimani H., Azhdarpoor A., Hashemi H., Radfard M., Nasri O., Ghoochani M., Azizi H., Ebrahimzadeh G., Mahvi A.H., 2022b. Probabilistic and deterministic approaches to estimation of non-carcinogenic human health risk due to heavy metals in groundwater resources of torbat heydariyeh, southeastern of Iran. Int. J. Environ. Anal. Chem. 102 (11), 2536-2550. https://doi.org/10.1080/03067319.2020.1757086.

[83]

Sridhar C.N., Thirumurugan M., Subramani T., Gopinathan P., 2025. Global distribution and sources of uranium and fluoride in groundwater: A comprehensive review. J. Geochem. Explor. 270, 107665. https://doi.org/10.1016/j.gexplo.2024.107665.

[84]

Subba Rao N., 2017. Hydrogeology: Problems with Solutions. Prentice Hall of India, New Delhi.

[85]

Subba Rao N., 2021. Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India. Environ. Geochem. Health 43, 971-993. https://doi.org/10.1007/s10653-020-00621-3.

[86]

Subramani T., Anandakumar S., Kannan R., Elango L., 2013. Identification of major hydrogeochemical processes in a hard rock terrain by NETPATH modeling. Earth Resour. Environ., 29, 365-370

[87]

Subramani T., Rajmohan N., Elango L., 2009. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, southern India. Environ. Monit. Assess. 162 (1-4), 123-137. https://doi.org/10.1007/s10661-009-0781-4.

[88]

Sunitha V., Reddy Y.S., Suvarna B., Reddy B.M., 2022. Human health risk assessment (HHRA) of fluoride and nitrate using pollution index of groundwater (PIG) in and around hard rock terrain of Cuddapah, A.P. South India. Environ. Chem. Ecotoxicol. 4, 113-123. https://doi.org/10.1016/J.ENCECO.2021.12.002.

[89]

Tiwari K.K., Raghav R., Pandey R., 2023. Recent advancements in fluoride impact on human health: A critical review. Environ. Sustain. Indic. 20, 100305. https://doi.org/10.1016/j.indic.2023.100305.

[90]

Tiwari K.K., Krishan G., Prasad G., Mondal N.C., Bhardwaj V., 2020. Evaluation of fluoride contamination in groundwater in a semi-arid region, Dausa District, Rajasthan, India. Groundw. Sustain. Dev. 11, 100465. https://doi.org/10.1016/j.gsd.2020.100465.

[91]

US EPA, 2014. Hum Health Eval Man, Suppl Guid: Update Stand Default Expo Factors-OSWER Dir 9200, 1-120

[92]

Verma S., Sinha A., 2023. Appraisal of groundwater arsenic on opposite banks of River Ganges, West Bengal, India, and quantification of cancer risk using Monte Carlo simulations. Environ. Sci. Pollut. Res. 30 (10), 25205-25225. https://doi.org/10.1007/s11356-021-17902-8.

[93]

Vinnarasi F., Srinivasamoorthy K., Saravanan K., Gopinath S., Prakash R., Ponnumani G., Babu C., 2021. Chemical weathering and atmospheric carbon dioxide (CO2) consumption in Shanmuganadhi, South India: evidence from groundwater geochemistry. Environ. Geochem. Health 43, 771-790. https://doi.org/10.1007/s10653-020-00540-3.

[94]

Wagh V.M., Panaskar D.B., Jacobs J.A., Mukate S.V., Muley A.A., Kadam A.K., 2019. Influence of hydrogeochemical processes on groundwater quality through geostatistical techniques in Kadava River basin, Western India. Arab. J. Geosci. 12, 7. https://doi.org/10.1007/s12517-018-4136-8.

[95]

Wendt D.E., van Loon A.F., Scanlon B.R., Hannah D.M., 2021. Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers. Environ. Res. Lett. 16 (1), 014046. https://doi.org/10.1088/1748-9326/abcfe1.

[96]

WHO, 2004. Fluoride in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. Geneva

[97]

WHO, 2017. World health statistics 2017: Monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2017. License: CC BY-NC-SA 3.0 IGO.

[98]

Wu J., Zhou H., He S., Zhang Y., 2019. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environ. Earth Sci. 78 (15), 446. https://doi.org/10.1007/s12665-019-8471-1.

AI Summary AI Mindmap
PDF

605

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/