Development of a comprehensive framework for wetland ecosystem assessment and management
Manob Das, Arijit Das, Suman Singha
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102036.
Development of a comprehensive framework for wetland ecosystem assessment and management
This study focuses on the assessment of ecosystem health (EH), ecosystem services (ES), and ecosystem risk (ER) in East Kolkata Wetland (EKW). A comprehensive framework on the EH, ES and ER has been developed using remote sesning and geo-spatial techniques for the year 2000, 2005, 2010, 2015, and 2020. The study also assessed ecosystem structure and fragmentation using landscape metrics calculated using fragstats, which showed a significant influence of land use and land cover (LULC) changes on the wetland’s ecological integrity. The study revealed that 6.86% of EKW fallen under a very low EH zone, while 20% was categorized as having very high EH. Spatio-temporal analysis of ES indicated that 30% of the area had very low ES value, with only 8% exhibiting very high ES. ER assessment revealed that 7% of the study area was highly ER, while 12% identified within a high ER zone, reflecting frequent LULC changes. The correlation analysis highlighted strong negative relationships between landscape deviation degree (LDD) and EH (−0.971), and between normalized difference water index (NDWI) and normalized difference vegetation index (NDVI) (−0.991). Additionally, landscape metrics such as the number of patches (NP) and the largest patch index (LPI) exhibited significant correlations, emphasizing the impact of fragmentation on EH and resilience. This comprehensive assessment underscores the importance of integrated approaches to monitor and manage wetland ecosystems, particularly in urban areas facing significant environmental stressors. The findings are crucial for informed decision-making and sustainable management of the wetland ecosystems, particularly in the cities of the global south.
Ecosystem health / Ecosystem services / Landscape fragmentation / Remote sensing / Urbanization
K.R. Ahmed, S. Akter. Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with Landsat multi-spectral surface reflectance satellite data. Remote Sens. Appl.: Soc. Environ., 8 (2017), pp. 168-181
|
S.F. Ahmed, P.S. Kumar, M. Kabir, F.T. Zuhara, A. Mehjabin, N. Tasannum, A.T. Hoang, Z. Kabir, M. Mofijur. Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environ. Res., 214 (2022), Article 113808,
CrossRef
Google scholar
|
S. Alikhani, P. Nummi, A. Ojala. Urban wetlands: a review on ecological and cultural values. Water, 13 (22) (2021), p. 3301
|
R.W. Aslam, H. Shu, I. Naz, A. Quddoos, A. Yaseen, K. Gulshad, S.S. Alarifi. Machine learning-based wetland vulnerability assessment in the Sindh Province Ramsar Site using remote sensing data. Remote Sens., 16 (5) (2024), p. 928
|
M.E. Assessment. Ecosystems and Human Well-Being: Wetlands and Water. World Resources Institute (2005)
|
J. Badamfirooz, R. Mousazadeh, H. Sarkheil. A proposed framework for economic valuation and assessment of damages cost to national wetlands ecosystem services using the benefit-transfer approach. Environ. Challenges, 5 (2021), Article 100303,
CrossRef
Google scholar
|
G.A. Ballut-Dajud, L.C. Sandoval Herazo, G. Fernández-Lambert, J.L. Marín-Muñiz, M.C. López Méndez, E.A. Betanzo-Torres. Factors affecting wetland loss: a review. Land, 11 (3) (2022), p. 434
|
N. Bassi, M.D. Kumar, A. Sharma, P. Pardha-Saradhi. Status of wetlands in India: a review of extent, ecosystem benefits, threats and management strategies. J. Hydrol. Regional Studies, 2 (2014), pp. 1-19
|
Biodiversity International. Linking Biodiversity, Ecosystem Services, and Human Well-Being: Evidence and Policy Implications. Biodiversity International (2019)
|
W.S. Birch, M. Drescher, J. Pittman, R.C. Rooney. Trends and predictors of wetland conversion in urbanizing environments. J. Environ. Manage., 310 (2022), p. 114723,
CrossRef
Google scholar
|
K. Brinkmann, E. Hoffmann, A. Buerkert. Spatial and temporal dynamics of urban wetlands in an Indian megacity over the past 50 years. Remote Sens., 12 (4) (2020), p. 662
|
A.J. Calhoun, D.M. Mushet, K.P. Bell, D. Boix, J.A. Fitzsimons, F. Isselin-Nondedeu. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biol. Conserv., 211 (2017), pp. 3-11
|
J.V. Canelas, H.M. Pereira. Impacts of land-use intensity on ecosystems stability. Ecol. Model., 472 (2022), Article 110093,
CrossRef
Google scholar
|
S. Chaudhary, Y. Wang, A.M. Dixit, N.R. Khanal, P. Xu, K. Yan, Q. Liu, Y.F. Li, M. Li. Eco-environmental risk evaluation for land use planning in areas of potential farmland abandonment in the high mountains of Nepal Himalayas. Sustainability, 11 (24) (2019), p. 6931
|
C. Corbau, E. Zambello, I. Rodella, K. Utizi, W. Nardin, U. Simeoni. Quantifying the impacts of the human activities on the evolution of Po delta territory during the last 120 years. J. Environ. Manage., 232 (2019), pp. 702-712
|
R. Costanza, R. d'Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O'Neill, J. Paruelo, R.G. Raskin, P. Sutton, M. Van Den Belt. The value of the world's ecosystem services and natural capital. Nature, 387 (6630) (1997), pp. 253-260
|
R. Costanza, R. De Groot, P. Sutton, S. Van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, R.K. Turner, B. Hardy. Changes in the global value of ecosystem services. Glob. Environ. Chang., 26 (2014), pp. 152-158
|
R. Costanza, R. De Groot, L. Braat, I. Kubiszewski, L. Fioramonti, P. Sutton, S. Farber, M. Grasso. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosyst. Serv., 28 (2017), pp. 1-16
|
G.K. Danso, S.A. Takyi, O. Amponsah, A.S. Yeboah, R.O. Owusu. Exploring the effects of rapid urbanization on wetlands: insights from the Greater Accra Metropolitan Area, Ghana. SN Soc. Sci., 1 (2021), pp. 1-21,
CrossRef
Google scholar
|
N. Das, S. Mehrotra. Impact of urban expansion on wetlands: a case study of Bhoj Wetland, India. J. Indian Soc. Remote Sens., 51 (8) (2023), pp. 1697-1714
|
N.C. Davidson. How much wetland has the world lost? Long-term and recent trends in global wetland. Mar. Freshwat. Res., 65 (10) (2014), pp. 934-941,
CrossRef
Google scholar
|
R. De Groot, L. Brander, S. Van Der Ploeg, R. Costanza, F. Bernard, L. Braat, …, P. Van Beukering. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv., 1 (1) (2012), pp. 50-61
|
R. de Groot, S. Moolenaar, J. de Vente, V. De Leijster, M.E. Ramos, A.B. Robles, Y. Schoonhoven, P. Verweij. Framework for integrated Ecosystem Services assessment of the costs and benefits of large-scale landscape restoration illustrated with a case study in Mediterranean Spain. Ecosyst. Serv., 53 (2022), Article 101383,
CrossRef
Google scholar
|
G.T. Duarte, P.M. Santos, T.G. Cornelissen, M.C. Ribeiro, A.P. Paglia. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol., 33 (2018), pp. 1247-1257
|
E. Duku, P.A.D. Mattah, D.B. Angnuureng. Assessment of wetland ecosystem services and human wellbeing nexus in sub-Saharan Africa: empirical evidence from a socio-ecological landscape of Ghana. Environ. Sustainability Indic., 15 (2022), Article 100186,
CrossRef
Google scholar
|
Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P. J., McDonald, R. I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., Wilkinson, C., 2013. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Springer Dordrecht, p. 755.
|
L. Fahrig. Ecological effects of habitat fragmentation. Annu. Rev. Ecol. Evol. Syst., 48 (2017), pp. 1-27,
CrossRef
Google scholar
|
J. Fan, Y. Wang, Z. Zhou, N. You, J. Meng. Dynamic ecological risk assessment and management of land use in the middle reaches of the Heihe River based on landscape patterns and spatial statistics. Sustainability, 8 (6) (2016), p. 536
|
C.M. Finlayson, G.R. Milton, R.C. Prentice, N.C. Davidson. . The Wetland Book: II: Distribution, Description, and Conservation, Springer, Berlin/Heidelberg, Germany (2018),
CrossRef
Google scholar
|
R.J. Fletcher Jr, R.K. Didham, C. Banks-Leite, J. Barlow, R.M. Ewers, J. Rosindell, R.D. Holt, A. Gonzalez, R. Pardini, E.I. Damschen, F.P.L. Melo, L. Ries, J.A. Prevedello, T. Tscharntke, W.F. Laurance, T. Lovejoy, N.M. Haddad. Is habitat fragmentation good for biodiversity?. Biol. Conserv., 226 (2018), pp. 9-15
|
B. Gao, Y. Wu, C. Li, K. Zheng, Y. Wu. Ecosystem health responses of urban agglomerations in Central Yunnan based on land use change. Int. J. Environ. Res. Public Health, 19 (19) (2022), p. 12399,
CrossRef
Google scholar
|
Y. Gao, X. Zhou, Q. Wang, C. Wang, Z. Zhan, L. Chen, J. Yan, R. Qu. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Tot. Environ., 444 (2013), pp. 356-362
|
S. Ghosh, A. Das. Wetland conversion risk assessment of East Kolkata Wetland: a Ramsar site using random forest and support vector machine model. J. Clean. Prod., 275 (2020), Article 123475,
CrossRef
Google scholar
|
E. Gómez-Baggethun, D.N. Barton. Classifying and valuing ecosystem services for urban planning. Ecol. Econ., 86 (2013), pp. 235-245,
CrossRef
Google scholar
|
D.R. Grafius, R. Corstanje, P.H. Warren, K.L. Evans, S. Hancock, J.A. Harris. The impact of land use/land cover scale on modelling urban ecosystem services. Landsc. Ecol., 31 (2016), pp. 1509-1522
|
S. Guo, C. Wu, Y. Wang, G. Qiu, D. Zhu, Q. Niu, L. Qin. Threshold effect of ecosystem services in response to climate change, human activity and landscape pattern in the upper and middle Yellow River of China. Ecol. Ind., 136 (2022), Article 108603,
CrossRef
Google scholar
|
N.M. Haddad, L.A. Brudvig, J. Clobert, K.F. Davies, A. Gonzalez, R.D. Holt, et al.. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv., 1 (2) (2015), Article e1500052,
CrossRef
Google scholar
|
S.S. Hasan, L. Zhen, M.G. Miah, T. Ahamed, A. Samie. Impact of land use change on ecosystem services: a review. Environ. Devel., 34 (2020), Article 100527,
CrossRef
Google scholar
|
S. Hosseini, K. Barker, J.E. Ramirez-Marquez. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf., 145 (2016), pp. 47-61
|
Y. Hou, B. Burkhard, F. Müller. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manage., 127 (2013), pp. S117-S131,
CrossRef
Google scholar
|
H. Islam, H. Abbasi, A. Karam, A.H. Chughtai, M. Ahmed Jiskani. Geospatial analysis of wetlands based on land use/land cover dynamics using remote sensing and GIS in Sindh, Pakistan. Sci. Progr., 104 (2) (2021), pp. 1-22,
CrossRef
Google scholar
|
Y. Jabareen. Planning the resilient city: concepts and strategies for coping with climate change and environmental risk. Cities, 31 (2013), pp. 220-229
|
Å. Jansson. Reaching for a sustainable, resilient urban future using the lens of ecosystem services. Ecol. Econ., 86 (2013), pp. 285-291
|
M. Kandziora, B. Burkhard, F. Müller. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecol. Ind., 28 (2013), pp. 54-78
|
W.M. Karl, A.C.B. Mascarenhas, B.S. Diaouma, B. Raita, B. Martín, C. Marcos, et al.. Urban stream and wetland restoration in the Global South—A DPSIR analysis. Sustainability, 11 (18) (2019), p. 4975,
CrossRef
Google scholar
|
Kollmann, J., Meyer, S. T., Bateman, R., Conradi, T., Gossner, M. M., de Souza Mendonça Jr, M., Fernandes, G.W., Hermann, J.-M., Koch, C., Müller, S.C., Oki, Y., Overbeck, G.E., Paterno, G.B., Rosenfield, M.F., Toma, T.S.P., Weisser, W. W., 2016. Integrating ecosystem functions into restoration ecology—recent advances and future directions. Restor. Ecol. 24(6), 722–730.
|
W. Li, J. Kang, Y. Wang. Seasonal changes in ecosystem health and their spatial relationship with landscape structure in China's Loess plateau. Ecol. Ind., 163 (2024), Article 112127,
CrossRef
Google scholar
|
Y. Li, Y. Li, S. Qureshi, M. Kappas, K. Hubacek. On the relationship between landscape ecological patterns and water quality across gradient zones of rapid urbanization in coastal China. Ecological Modelling, 318 (2015), pp. 100-108
|
G. Li, S. Sun, C. Fang. The varying driving forces of urban expansion in China: insights from a spatial-temporal analysis. Landsc. Urban Plan., 174 (2018), pp. 63-77,
CrossRef
Google scholar
|
J. Liao, Y. Jia, L. Tang, Q. Huang, Y. Wang, N. Huang, L. Hua. Assessment of urbanization-induced ecological risks in an area with significant ecosystem services based on land use/cover change scenarios. Int. J. Sust. Dev. World, 25 (5) (2018), pp. 448-457
|
J. Liu, J. Li, K. Qin, Z. Zhou, X. Yang, T. Li. Changes in land-uses and ecosystem services under multi-scenarios simulation. Sci. Tot. Environ., 586 (2017), pp. 522-526
|
T. Lv, C. Zeng, C. Lin, W. Liu, Y. Cheng, Y. Li. Towards an integrated approach for land spatial ecological restoration zoning based on ecosystem health assessment. Ecol. Ind., 147 (2023), Article 110016,
CrossRef
Google scholar
|
B. Malekmohammadi, L.R. Blouchi. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. Ecol. Ind., 41 (2014), pp. 133-144
|
P.H. Mallick, S.K. Chakraborty. Forest, wetland and biodiversity: revealing multi-faceted ecological services from ecorestoration of a degraded tropical landscape. Ecohydrol. Hydrobiol., 18 (3) (2018), pp. 278-296
|
F. Marshall, J. Dolley, R. Bisht, R. Priya, L. Waldman, P. Randhawa, J. Scharlemann, P. Amerasinghe, R. Saharia, A. Kapoor, B. Rizvi, Y. Hamid, M. Arora, I. Chopra, K.S. Teresa. Recognising peri-urban ecosystem services in urban development policy and planning: a framework for assessing agri-ecosystem services, poverty and livelihood dynamics. Landsc. Urban Plan., 247 (2024), Article 105042,
CrossRef
Google scholar
|
M.J. Mashala, T. Dube, B.T. Mudereri, K.K. Ayisi, M.R. Ramudzuli. A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sens., 15 (16) (2023), p. 3926
|
R.I. McDonald, A.V. Mansur, F. Ascensão, M. Colbert, K. Crossman, T. Elmqvist, A. Gonzalez. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustainability, 3 (1) (2020), pp. 16-24,
CrossRef
Google scholar
|
K. McGarigal, H.Y. Wan, K.A. Zeller, B.C. Timm, S.A. Cushman. Multi-scale habitat selection modeling: a review and outlook. Landsc. Ecol., 31 (2016), pp. 1161-1175
|
T. McPhearson, E. Andersson, T. Elmqvist, N. Frantzeskaki. Resilience of and through urban ecosystem services. Ecosyst. Serv., 12 (2015), pp. 152-156
|
Z. Meng, M. He, X. Li, H. Li, Y. Tan, Z. Li, Y. Wei. Spatio–temporal analysis and driving forces of urban ecosystem resilience based on land use: a case study in the Great Bay Area. Ecol. Ind., 159 (2024), Article 111769,
CrossRef
Google scholar
|
J.D. Miller, M. Hutchins. The impacts of urbanisation and climate change on urban flooding and urban water quality: a review of the evidence concerning the United Kingdom. J. Hydrol. Regional Studies, 12 (2017), pp. 345-362
|
S.A. Mitchell. The status of wetlands, threats and the predicted effect of global climate change: the situation in Sub-Saharan Africa. Aquat. Sci., 75 (1) (2013), pp. 95-112
|
W.J. Mitsch, J.G. Gosselink. . Wetlands, John Wiley & Sons (2015)
|
B. Mondal, G. Dolui, M. Pramanik, S. Maity, S.S. Biswas, R. Pal. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Ind., 83 (2017), pp. 62-73
|
W.R. Moomaw, G.L. Chmura, G.T. Davies, C.M. Finlayson, B.A. Middleton, S.M. Natali, J.E. Perry, N. Roulet, A.E. Sutton-Grier. Wetlands in a changing climate: science, policy and management. Wetlands, 38 (2) (2018), pp. 183-205
|
R. Neyns, F. Canters. Mapping of urban vegetation with high-resolution remote sensing: a review. Remote Sens., 14 (4) (2022), p. 1031,
CrossRef
Google scholar
|
O. Ola, E. Benjamin. Preserving biodiversity and ecosystem services in West African forest, watersheds, and wetlands: a review of incentives. Forests, 10 (6) (2019), p. 479
|
J. Peng, Y. Liu, J. Wu, H. Lv, X. Hu. Linking ecosystem services and landscape patterns to assess urban ecosystem health: a case study in Shenzhen City, China. Landsc. Urban Plan., 143 (2015), pp. 56-68
|
J. Peng, Y. Liu, T. Li, J. Wu. Regional ecosystem health response to rural land use change: a case study in Lijiang City, China. Ecol. Ind., 72 (2017), pp. 399-410
|
Y. Peng, N. Welden, F.G. Renaud. A framework for integrating ecosystem services indicators into vulnerability and risk assessments of deltaic social-ecological systems. J. Environ. Manage., 326 (2023), Article 116682,
CrossRef
Google scholar
|
M.E. Pierik, M. Dell’Acqua, R. Confalonieri, S. Bocchi, S. Gomarasca. Designing ecological corridors in a fragmented landscape: a fuzzy approach to circuit connectivity analysis. Ecol. Ind., 67 (2016), pp. 807-820
|
D. Pisani, P. Pazienza, E.V. Perrino, D. Caporale, C. De Lucia. The economic valuation of ecosystem services of biodiversity components in protected areas: a review for a framework of analysis for the Gargano National Park. Sustainability, 13 (21) (2021), p. 11726,
CrossRef
Google scholar
|
J. Pueyo-Ros, A. Ribas, R.M. Fraguell. A cultural approach to wetlands restoration to assess its public acceptance. Restor. Ecol., 27 (3) (2019), pp. 626-637,
CrossRef
Google scholar
|
Ramsar Convention, 2018. Global Wetland Outlook: State of the World’s Wetlands and their Services to People. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3261606.
|
P. Ran, A.E. Frazier, C. Xia, D.S. Tiando, Y. Feng. How does urban landscape pattern affect ecosystem health? Insights from a spatiotemporal analysis of 212 major cities in China. Sustain. Cities Soc., 99 (2023), Article 104963,
CrossRef
Google scholar
|
S.M. Rezvani, N.M. de Almeida, M.J. Falcão. Climate adaptation measures for enhancing urban resilience. Buildings, 13 (9) (2023), p. 2163
|
A.D. Richardson, S. Klosterman, M. Toomey. Near-surface sensor-derived phenology. M. Schwartz (Ed.), Phenology: An Integrative Environmental Science, Springer, Dordrecht (2013), pp. 413-430,
CrossRef
Google scholar
|
A. Roy-Basu, G.K. Bharat, P. Chakraborty, S.K. Sarkar. Adaptive co-management model for the East Kolkata wetlands: a sustainable solution to manage the rapid ecological transformation of a peri-urban landscape. Sci. Tot. Environ., 698 (2020), Article 134203,
CrossRef
Google scholar
|
S. Saquib, A. Gupta, A. Joshi. Emerging water crisis: impact of urbanization on water resources and constructed wetlands as a nature-based solution (NbS). Curr. Direct. Water Scarc. Res., 6 (2022), pp. 447-468,
CrossRef
Google scholar
|
T. Semeraro, B. Radicchio, P. Medagli, S. Arzeni, A. Turco, D. Geneletti. Integration of ecosystem services in strategic environmental assessment of a peri-urban development plan. Sustainability, 13 (1) (2020), p. 122
|
A.K.M. Shahidullah, M.U.I. Choudhury, C. Emdad Haque. Ecosystem changes and community wellbeing: social-ecological innovations in enhancing resilience of wetlands communities in Bangladesh. Local Environ., 25 (11–12) (2020), pp. 967-984
|
S. Singh, A. Bhardwaj, V.K. Verma. Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. J. Environ. Manag., 262 (2020), Article 110355,
CrossRef
Google scholar
|
A.K. Skidmore, N. Pettorelli, N.C. Coops, G.N. Geller, M. Hansen, R. Lucas, C.A. Mücher, B. O'Connor, M. Paganini, H.M. Pereira, M.E. Schaepman, W. Turner, T.J. Wang, M. Wegmann. Environmental science: agree on biodiversity metrics to track from space. Nature, 523 (7561) (2015), pp. 403-405
|
B.J. Spiesman, A.P. Stapper, B.D. Inouye. Patch size, isolation, and matrix effects on biodiversity and ecosystem functioning in a landscape microcosm. Ecosphere, 9 (3) (2018), Article e02173
|
K.M. Stryszowska-Hill, C.E. Benson, B. Carberry, M.R. Twiss, T.A. Langen. Performance of wetland environmental quality assessment indicators at evaluating palustrine wetlands in northeastern New York State. Ecol. Ind., 98 (2019), pp. 743-752
|
A.E. Sutton-Grier, P.A. Sandifer. Conservation of wetlands and other coastal ecosystems: a commentary on their value to protect biodiversity, reduce disaster impacts, and promote human health and well-being. Wetlands, 39 (6) (2019), pp. 1295-1302
|
J. Wang, Y. Lin, A. Glendinning, Y. Xu. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy, 75 (2018), pp. 375-387
|
Z. Wang, Z. Yang, H. Shi, F. Han, Q. Liu, J. Qi, Y. Lu. Ecosystem health assessment of world natural heritage sites based on remote sensing and field sampling verification: Bayanbulak as case study. Sustainability, 12 (7) (2020), p. 2610
|
K.M. Wantzen, C.B.M. Alves, S.D. Badiane, R. Bala, M. Blettler, M. Callisto, A. Zingraff-Hamed. Urban stream and wetland restoration in the Global South—A DPSIR analysis. Sustainability, 11 (18) (2019), p. 4975
|
A. Wondie. Ecological conditions and ecosystem services of wetlands in the Lake Tana Area, Ethiopia. Ecohydrol. Hydrobiol., 18 (2) (2018), pp. 231-244
|
Y. Xiong, S. Mo, H. Wu, X. Qu, Y. Liu, L. Zhou. Influence of human activities and climate change on wetland landscape pattern—A review. Sci. Tot. Environ., 879 (2023), Article 163112,
CrossRef
Google scholar
|
X. Xu, M. Chen, G. Yang, B. Jiang, J. Zhang. Wetland ecosystem services research: a critical review. Global Ecol. Conserv., 22 (2020), Article e01027,
CrossRef
Google scholar
|
P.K. Yadav, P. Jha, M.S. Joy, T. Bansal. Ecosystem health assessment of East Kolkata Wetlands, India: implications for environmental sustainability. J. Environ. Manage., 366 (2024), Article 121809,
CrossRef
Google scholar
|
R. Yang, S. Chen, X. Dong, K. Wang, T. He, H. Chen, X.Y. Li, Y.M. Ye, W. Xiao. Revealing conflict risk between landscape modification and species conservation in the context of climate change. J. Clean. Prod., 479 (2024), Article 144028,
CrossRef
Google scholar
|
W. Yang, Y. Jin, T. Sun, Z. Yang, Y. Cai, Y. Yi. Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities. Ecol. Ind., 92 (2018), pp. 354-366
|
L. Yang, S. Zhang, L. Yin, B. Zhang. Global occupation of wetland by artificial impervious surface area expansion and its impact on ecosystem service value for 2001–2018. Ecol. Ind., 142 (2022), Article 109307,
CrossRef
Google scholar
|
C. You, H. Qu, S. Zhang, L. Guo. Assessment of uncertainties in ecological risk based on the prediction of land use change and ecosystem service evolution. Land, 13 (4) (2024), p. 535
|
D. Yu, D. Wang, W. Li, S. Liu, Y. Zhu, W. Wu, Y. Zhou. Decreased landscape ecological security of peri-urban cultivated land following rapid urbanization: an impediment to sustainable agriculture. Sustainability, 10 (2) (2018), p. 394
|
J.B. Zedler, S. Kercher. Wetland resources: status, trends, ecosystem services, and restorability. Annu. Rev. Env. Resour., 30 (2005), pp. 39-74,
CrossRef
Google scholar
|
T. Zhou, A. Niu, Z. Huang, J. Ma, S. Xu. Spatial relationship between natural wetlands changes and associated influencing factors in mainland China. ISPRS Int. J. Geo Inf., 9 (3) (2020), p. 179
|
/
〈 |
|
〉 |