Cobalt enrichment in Paleoproterozoic African and Brazilian manganese deposits
Evilarde Carvalho Uchôa Filho, Felipe Holanda dos Santos, Douglas Teixeira Martins, Wagner da Silva Amaral, José Alberto Rodrigues do Vale
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102035.
Cobalt enrichment in Paleoproterozoic African and Brazilian manganese deposits
This study highlights a new by-product source for cobalt by recycling Paleoproterozoic Mn deposits. We present a geochemical modeling approach utilizing Principal Component Analysis (PCA) for available geochemical data of Paleoproterozoic manganese deposits found in Africa and Brazil, which exhibit anomalous cobalt contents (up to 1200 ppm) along with other metals such as copper, nickel, and vanadium. The PCA results for the correlation coefficient matrix of the Enrichment Factor (EF) values of major and trace elements from samples of eight Mn deposits found in Africa and Brazil (Kisenge-Kamata, Moanda, Nsuta in Africa, and Azul, Buritirama, Lagoa do Riacho, Morro da Mina, and Serra do Navio in Brazil) yielded a cumulative variance of 53.3% for PC1 (34%) and PC2 (19.3%). In PC1, the highest positive loadings correspond to the variables MnEF, NiEF, and CoEF, while the highest negative loadings correspond to the variables SiEF, FeEF, KEF, TiEF, CrEF, and ZrEF. PC2 exhibits the highest positive loadings for the variables CaEF, MgEF, and PEF, while the highest negative loadings are for CuEF and VEF. The biplot diagram representation showed that clusters of vectors MnEF, NiEF, CoEF, VEF, and CuEF influence samples of Mn-carbonate rock, Mn-carbonate–silicate rock, Mn-silicate rock, and Mn-carbonate-siliciclastic rock, all with high CoEF values (up to 414). The cluster of vectors CaEF, MgEF, and PEF significantly influence carbonate rock and dolomite marble, which have low CoEF values (close to 0). The cluster of vectors SiEF, FeEF, KEF, TiEF, CrEF, and ZrEF strongly influences siliciclastic rock, which exhibits low CoEF values. On the other hand, the cluster of vectors CuEF and VEF influences oxidized Mn ore, which exhibits CoEF values of up to 108. The results reveal a dichotomy regarding the origin of cobalt and other metal enrichments in these deposits linked to the Mn redox cycle. This process involves the formation of Mn-oxyhydroxides with the adsorption of Co and other metals under oxic conditions, followed by the burial of these Mn oxides in an anoxic diagenetic environment, where microbial sulfate reduction leads to the nucleation of Mn-carbonates and the formation of metal-rich sulfides (Fe, Co, Ni, V). Additionally, detrital input and sulfide phases (e.g., framboidal pyrite) for the formation of Mn-rich siliciclastic rocks associated with Mn-carbonate rocks are evidenced by proxies SiEF, FeEF, KEF, TiEF, CrEF, and ZrEF. This new exploration approach, supported by geochemical modeling through PCA, enhances our understanding of the genesis of these Paleoproterozoic manganese deposits and highlights a new route for cobalt exploration. In the increasing global demand for cobalt, particularly in applications involving electric vehicle batteries and energy storage, exploring these deposits emerges as an alternative source to produce these critical metals.
Critical minerals / Cobalt-bearing Manganese deposits / Principal Component Analysis (PCA) / Geochemical modeling
J. Aitchison. The statistical analysis of compositional data. J. Roy. Stat. Soc. B, 44 (2) (1982), pp. 139-160,
CrossRef
Google scholar
|
J. Aitchison. The Statistical Analysis of Compositional Data. Springer, Netherlands, Dordrecht (1986)
|
M.F.D.S. Albuquerque, A.M.C. Horbe, N.F. Botelho. Genesis of manganese deposits in southwestern Amazonia: Mineralogy, geochemistry and paleoenvironment. Ore Geol. Rev., 89 (2017), pp. 270-289,
CrossRef
Google scholar
|
T.J. Algeo, J. Liu. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol., 540 (2020), Article 119549,
CrossRef
Google scholar
|
T.J. Algeo, N. Tribovillard. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol., 268 (2009), pp. 211-225,
CrossRef
Google scholar
|
L. André. Age Rb-Sr protérozoïque inférieur du magmatisme continental du groupe de la Lulua (Kasai, Zaïre): ses implications géodynamiques. Ann. Soc. Géol. Belgique, 116 (1993), pp. 1-12
|
R. Araújo, R.A. Filho, L. Costa. Tectono-sedimentary evolution of the Paleoproterozoic succession of the Carajás Basin, southeastern Amazonian Craton, Brazil: Insights from sedimentology, stratigraphy, and U-Pb detrital zircon geochronology. Precambrian Res., 362 (2021), Article 106290,
CrossRef
Google scholar
|
J. Aubineau, A. El Albani, A. Bekker, E. Chi Fru, A. Somogyi, K. Medjoubi, A. Riboulleau, A. Meunier, K.O. Konhauser. Trace element perspective into the ca. 2.1-billion-year-old shallow-marine microbial mats from the Francevillian Group, Gabon. Chem. Geol., 543 (2020), Article 119620,
CrossRef
Google scholar
|
M. Benites, J.R. Hein, K. Mizell, T. Blackburn, L. Jovane. Genesis and evolution of ferromanganese crusts from the Summit of Rio Grande Rise. Southwest Atlantic Ocean. Minerals, 10 (2020), p. 349,
CrossRef
Google scholar
|
N.J. Beukes, E.P.W. Swindell, H. Wabo. Manganese deposits of Africa. Episodes, 39 (2016), pp. 285-317, 10.18814/epiiugs/2016/v39i2/95779
|
M. Bouabdellah, J.F. Slack. Mineral Deposits of North Africa. Mineral Resource Reviews, Springer, Cham (2016)
|
P. Bouton, D. Thiéblemont, J. Gouin, A. Cocherie, C. Guerrot, M. Tegyey, A. Préat, S. Simo Ndounze, M. Moussavou. . Carte géologique de la République du Gabon à 1/200 000, feuille Franceville – Boumango, Editions DGMG – Ministères des Mines, du Pétrole, des Hydrocarbures, Libreville., BRGM (2009)
|
A. Boven, J.P. Liégeois, H. He, J. Jang, H.A. Jelsma, R.A. Armstrong. . The Southern Kasai shield: A Metacratonic Boundary of the Congo craton?, International Conference on Craton Formation and Destruction, Beijing, China (2011)
|
R. Bros, P. Stille, F. Gauthier-Lafaye, F. Weber, N. Clauer. Sm-Nd isotopic dating of Proterozoic clay material: an example from the Francevillian sedimentary series, Gabon. Earth Planet. Sci. Lett., 113 (1992), pp. 207-218
|
A.R. Cabral, A. Zeh, N.C. Vianna, L. Ackerman, J. Pašava, B. Lehmann, V. Chrastný. Molybdenum-isotope signals and cerium anomalies in Palaeoproterozoic manganese ore survive high-grade metamorphism. Sci. Rep., 9 (2019), p. 4570,
CrossRef
Google scholar
|
D.E. Canfield. A new model for Proterozoic ocean chemistry. Nature, 396 (1998), pp. 450-453,
CrossRef
Google scholar
|
E.J.M. Carranza. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Elsevier, Amsterdam (2008)
|
B.C. Chisonga, J. Gutzmer, N.J. Beukes, J.M. Huizenga. Nature and origin of the protolith succession to the Paleoproterozoic Serra do Navio manganese deposit, Amapa Province. Brazil. Ore Geol. Rev., 47 (2012), pp. 59-76,
CrossRef
Google scholar
|
B. Choubert. Occurrences of manganese in the Guianas (South America) and their relation with fundamental structures. UNESCO (1973), pp. 143-151
|
P. Colomban, L. Arberet, B. Kirmizi. On-site Raman analysis of 17th and 18th century Limoges enamels: implications on the European cobalt sources and the technological relationship between Limoges and Chinese enamels. Ceram. Int., 43 (2017), Article 10158e10165
|
A.G. Conly, S.D. Scott, H. Bellon. Metalliferous Manganese Oxide Mineralization Associated with the Boleo Cu-Co-Zn District. Mexico. Econ. Geol., 106 (2011), pp. 1173-1196,
CrossRef
Google scholar
|
T. Conrad, J.R. Hein, A. Paytan, D.A. Clague. Formation of Fe-Mn crusts within a continental margin environment. Ore Geol. Rev., 87 (2017), pp. 25-40,
CrossRef
Google scholar
|
Costa. M.L. Choque Fernandez, O. J. Requelme, M.E.R., 2005. O depósito de manganês do Azul. Carajás: Estratigrafia. mineralogia. geoquímica e evolução geológica. In: Marini O. J., (Ed.), Caracterização de depósitos minerais em distritos mineiros da Amazônia. P. 231-333.
|
M. Costa, O. Fernandez, M. Requelme, P.A. Belém, L.C. Costa, S.A. Vale, C. Delgado, S.A. Vale. Sedimentary manganese deposits in CARAJÁS, Brazil. Bol. Mus. Geociências Amaz, 9 (2022), pp. 1-38, 10.31419/ISSN.2594-942X.v92022i2a3MLC
|
J.M.V. Coutinho, M.A.F. Candia, J.V. Valarelli. Mineralogical study of the main manganese carbonate-silicate protores (queluzites) from Brazil and their weathering products. Abstr. Symp. 104.3 Geology and. Geochemistry of Manganese, 25th Int. Geol. Congr. (1976), pp. 764-765
|
Cronan, D.S., 2019. Manganese Nodules. In: Encyclopedia of Ocean Sciences. Elsevier, pp. 607–614. https://doi.org/10.1016/B978-0-12-409548-9.11383-1.
|
F.G. Da Costa, E.L. Klein, J.M. Lafon, J.M. Milhomem Neto, M.A. Galarza, J.B. Rodrigues, J.L.C. Naleto, R.G. Corrêa Lima. Geochemistry and U–Pb–Hf zircon data for plutonic rocks of the Troia Massif, Borborema Province, NE Brazil: Evidence for reworking of Archean and juvenile Paleoproterozoic crust during Rhyacian accretionary and collisional tectonics. Precambrian Res., 311 (2018), pp. 167-194,
CrossRef
Google scholar
|
S. Decrée, É. Deloule, G. Ruffet, S. Dewaele, F. Mees, C. Marignac, J. Yans, T. De Putter. Geodynamic and climate controls in the formation of Mio–Pliocene world-class oxidized cobalt and manganese ores in the Katanga province. DR Congo. Miner. Deposita, 45 (2010), pp. 621-629,
CrossRef
Google scholar
|
J. Delhal, S. Deutsch, B. Denoiseux. A Sm/1bNd isotopic study of heterogeneous granulites from the Archean Kasai-Lomami gabbro-norite and charnockite complex (Zaire, Africa). Chem. Geol., 57 (1986), pp. 235-245,
CrossRef
Google scholar
|
T. De Putter, G. Ruffet, J. Yans, F. Mees. The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region. Ore Geol. Rev., 71 (2015), pp. 350-362
|
T. De Putter, J.-P. Liégeois, S. Dewaele, J. Cailteux, A. Boyce, F. Mees. Paleoproterozoic manganese and base metals deposits at Kisenge-Kamata (Katanga, D.R. Congo). Ore Geol. Rev., 96 (2018), pp. 181-200,
CrossRef
Google scholar
|
O.A. Derby. On the original type of the manganese ore deposits of the Queluz district, Minas Geraes, Brazil. Am. J. Sci., 25 (1908), pp. 213-216
|
Dixon, C.J., 1979. The Nsuta Manganese Deposit — Ghana, in: Atlas of Economic Mineral Deposits. Springer Netherlands, Dordrecht, pp. 20–21. https://doi.org/10.1007/978-94-011-6511-2_6.
|
Dubois, M., 2017. Environnement de dépôt et processus de formation des carbonates de manganèse dans les black shales paléoprotérozoiques du Bassin de Franceville (2.1 Ga; Gabon).
|
S. Fabre, A. Nédélec, F. Poitrasson, H. Strauss, C. Thomazo, A. Nogueira. Iron and sulphur isotopes from the Caraj ́as mining province (Para ́, Brazil): implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Chem. Geol., 289 (1–2) (2011), pp. 124-139,
CrossRef
Google scholar
|
P. Filzmoser, K. Hron, C. Reimann. Principal component analysis for compositional data with outliers. Environmetrics, 20 (6) (2009), pp. 621-632,
CrossRef
Google scholar
|
Filzmoser, P., Hron, K., Templ, M., 2018. Applied Compositional Data Analysis: With Worked Examples in R, Springer Series in Statistics. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-96422-5
|
L. Frakes, B. Bolton. Effects of ocean chemistry, sea level and climate of the formation of primary manganese ore deposits. Econ. Geol., 87 (1992), pp. 1207-1217
|
F. Gauthier-Lafaye, F. Weber. Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Res., 120 (2003), pp. 81-100,
CrossRef
Google scholar
|
F. Gauthier-Lafaye, P. Holliger, P.-L. Blanc. Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a “critical event” in a geologic system. Geochim. Cosmochim. Acta, 60 (1996), pp. 4831-4852,
CrossRef
Google scholar
|
E.C. Giese. Strategic minerals: Global challenges post-COVID-19. Extr. Ind. Soc., 12 (2022), Article 101113,
CrossRef
Google scholar
|
G.P. Glasby. . K. Nicholson, K. Hein, B. Buhn, S. Dasgupta (Eds.), Mineral Deposits: Research and Exploration — Where Do They Meet?, 119, Geological Society Special Publication 119. Geological Society of, London, London (1997), pp. 29-42
|
Gomes, E.N., 2013. PROTOMINÉRIOS E MINÉRIOS DE MANGANÊS DE JUÁ - CE.
|
K.T. Goto, Y. Sekine, T. Ito, K. Suzuki, A.D. Anbar, G.W. Gordon, Y. Harigane, T. Maruoka, G. Shimoda, T. Kashiwabara, Y. Takaya, T. Nozaki, J.R. Hein, G.M. Tetteh, F.K. Nyame, S. Kiyokawa. Progressive ocean oxygenation at ∼2.2 Ga inferred from geochemistry and molybdenum isotopes of the Nsuta Mn deposit. Ghana. Chem. Geol., 567 (2021), Article 120116,
CrossRef
Google scholar
|
C.J. Grainger, D.I. Groves, F.H.B. Tallarico, I.R. Fletcher. Metallogenesis of the Carajás Mineral Province, Southern Amazon Craton, Brazil: Varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geol. Rev., 33 (2008), pp. 451-489,
CrossRef
Google scholar
|
L. Grandell, A. Lehtilä, M. Kivinen, T. Koljonen, S. Kihlman, L.S. Lauri. Role of critical metals in the future markets of clean energy technologies. Renew. Energy, 95 (2016), pp. 53-62,
CrossRef
Google scholar
|
Greenacre, M., 2023. The chi-square standardization, combined with Box-Cox trans formation, is a valid alternative to logratio transformation in compositional data analysis. arXiv URL https://arxiv.org/abs/2211.06755.
|
M. Grenholm. The global tectonic context of the ca. 2.27-1.96 Ga Birimian Orogen – Insights from comparative studies, with implications for supercontinent cycles. Earth Sci. Rev., 193 (2019), pp. 260-298,
CrossRef
Google scholar
|
M. Grenholm, M. Jessell, N. Thébaud. Paleoproterozoic volcano-sedimentary series in the ca. 2.27–1.96 Ga Birimian Orogen of the southeastern West African Craton. Precambrian Res., 328 (2019), pp. 161-192,
CrossRef
Google scholar
|
E.C. Grunsky. The interpretation of geochemical survey data. Geochem. Explor. Environ. Anal., 10 (2010), pp. 27-74
|
C. Güller, G. Thyne, J.E. McGray, A.K. Turner. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J., 10 (2002), pp. 455-474
|
J. Gutzmer, A.P. Du Plooy, N.J. Beukes. Timing of supergene enrichment of low-grade sedimentary manganese ores in the Kalahari Manganese Field, South Africa. Ore Geol. Rev., 47 (2012), pp. 136-153
|
J.R. Harris, E.C. Grünberg, L. White. Developments in the effective use of lithogeochemistry in regional exploration programs: application of GIS Technology. A.G. G (Ed.) (1997), pp. 285-292
|
M. Hawkins. Why we need cobalt. Applied Earth Sci., 110 (2) (2001), pp. 66-70,
CrossRef
Google scholar
|
R.M. Hazen, G. Hystad, J.J. Golden, D.R. Hummer, C. Liu, R.T. Downs, S.M. Morrison, J. Ralph, E.S. Grew. Cobalt mineral ecology. Am. Mineral., 102 (2017), pp. 108-116,
CrossRef
Google scholar
|
J.R. Hein, F. Spinardi, N. Okamoto, K. Mizell, D. Thorburn, A. Tawake. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol. Rev., 68 (2015), pp. 97-116,
CrossRef
Google scholar
|
J.R. Hein, A. Koschinsky, T. Kuhn. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ., 1 (2020), pp. 158-169,
CrossRef
Google scholar
|
J. Hode Vuorinen, U. Hålenius, M.J. Whitehouse, J. Mansfeld, A.D.L. Skelton. Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite, Alnö Island, Sweden. Lithos, 81 (2005), pp. 55-77
|
J.F. Holtrop. . De mangaanafzettingen van Het Guyana Schild, Geboren te Sungei Gerong, Indonesia (1965)
|
Q. Huang, D.-H. Pi, S.-Y. Jiang, D. Liu, H. Yan, K. Mänd, K. Kirsimäe, B. Bishop, L.J. Robbins, S.-S. Yang. The dual role of microbes in the formation of the Malkantu manganese carbonate deposit, NW China: Petrographic, geochemical, and experimental evidence. Chem. Geol., 606 (2022), Article 120992,
CrossRef
Google scholar
|
S.-Y. Jiang, W. Wang, H.-M. Su. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. J. Earth Sci., 34 (2023), pp. 1295-1298,
CrossRef
Google scholar
|
Y.-Q. Jiang, S.-Y. Jiang, H.-M. Su, W. Ren, H. Li, S. He. Geochemical characteristics of olivine and clinopyroxene in parental mafic–ultramafic rocks from the Yuanshishan Ni-Co laterite deposit in Qinghai Province. NW China. Ore Geol. Rev., 173 (2024), Article 106252,
CrossRef
Google scholar
|
A. Jonas. Manganese-bearing veins in southwestern Virginie. Econ. Geol., 37 (5) (1942), p. 41E
|
E.L. Klein, C.A.V. Moura. São Luís Craton and Gurupi Belt (Brazil): possible links with the West African Craton and surrounding Pan-African belts. Geol. Soc. Lond. Spec. Publ., 294 (2008), pp. 137-151,
CrossRef
Google scholar
|
D.J. Large, Z. Sawłowicz, J. Spratt. A cobaltite-framboidal pyrite association from the Kupferschiefer: possible implications for trace element behavior during the earliest stages of diagenesis. Mineral. Mag., 63 (1999), pp. 353-361,
CrossRef
Google scholar
|
D. Ledent, C. Lay, J. Delhal. Premières données sur lâge absolu des formations anciennes du ‘socle’ du Kasai (Congo méridional). Bull. Soc. Belge Géol., 71 (1962), pp. 223-237 (in French)
|
J.M. Leistel, E. Marcoux, D. Thiéblemont, C. Quesada, A. Sánchez, G.R. Almodóvar, E. Pascual, R. Sáez. The volcanic-hosted massive sulfide deposits of the Iberian Pyrite Belt. Miner. Deposita, 33 (1997), pp. 2-30,
CrossRef
Google scholar
|
M. Li, M. Lu. Cobalt in lithium-ion batteries. Science, 367 (2020), pp. 979-980
|
R. Liu, B. Ruan, X. Hu, W. Mei, X. Lv, Z. Zhang, Z. Cheng, A. Yang. Occurrence and enrichment mechanism of Co in Fe-Ti oxide deposits: A case study of the world-class Panzhihua deposit in SW China. Ore Geol. Rev., 172 (2024), Article 106177,
CrossRef
Google scholar
|
T.W. Lyons. Oxygen’s rise reduced. Nature, 448 (2007), pp. 1005-1006,
CrossRef
Google scholar
|
T.W. Lyons, C.T. Reinhard, N.J. Planavsky. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506 (2014), pp. 307-315,
CrossRef
Google scholar
|
E.R. Malinowski. Determination of rank by median absolute deviation (DRMAD): a simple method for determining the number of principal factors responsible for a data matrix. J. Chemometr., 23 (1) (2009), pp. 1-6
|
A. Manceau, M. Lanson, Y. Takahashi. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. Am. Mineral., 99 (2014), pp. 2068-2083,
CrossRef
Google scholar
|
S.M. McLennan. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems, 2 (2001), Article 2000GC000109,
CrossRef
Google scholar
|
S.M. McLennan, S.R. Taylor, S.R. Hemming. Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. M. Brown, T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust, Cambridge Univ. Press, New York (2001)
|
Mougeot, R., Respaut, J.P., Briqueu, L., Ledru, P., Milesi, J.P., Macambira, M.J.B., Huhn, S.B., 1996. Geochronological constrains for the age of the ́Aguas Claras Formation (Caraj ́as province, Par ́a, Brazil). In: 35th Congresso Brasileiro de Geologia. Salvador, Anais, pp. 579–581.
|
A. Mücke, K. Dzigbodi-Adjimah, A. Annor. Mineralogy, petrography, geochemistry and genesis of the Paleoproterozoic Birimian manganese-formation of Nsuta/Ghana. Miner. Deposita, 34 (1999), pp. 297-311,
CrossRef
Google scholar
|
R.H. Nagell. Geology of the Serra do Navio Manganese District Brazil. Bul. Soc. Econ. Geol., 57 (1962), pp. 482-498
|
A.J. Naldrett. Magmatic Sulfide Deposits. Springer, Berlin, Heidelberg (2004),
CrossRef
Google scholar
|
S.P. Neves. Atlantica revisited: new data and thoughts on the formation and evolution of a long-lived continent. Int. Geol. Rev., 53 (2011), pp. 1377-1391,
CrossRef
Google scholar
|
K. Nicholson. Contrasting mineralogical-geochemical signatures of manganese oxides: Guides to metallogenesis. Econ. Geol., 87 (1992), pp. 1253-1264
|
Nozaki, T., Nagase, T., Ushikubo, T., Shimizu, K., Ishibashi, J., and the D/V Chikyu Expedition 909 Scientists, 2021. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization. Geology 49, 222–227. https://doi.org/10.1130/G47943.1.
|
F. Nyame. Petrological significance of manganese carbonate inclusions in spessartine garnet and relation to the stability of spessartine in metamorphosed manganese-rich rocks. Contrib. Mineral. Petrol., 141 (2001), pp. 733-746,
CrossRef
Google scholar
|
F.K. Nyame. Petrography and geochemistry of intraclastic manganese–carbonates from the ∼2.2Ga Nsuta deposit of Ghana: Significance for manganese sedimentation in the Palaeoproterozoic of West Africa. J. Afr. Earth Sci., 50 (2008), pp. 133-147,
CrossRef
Google scholar
|
F.K. Nyame, N.J. Beukes, K. Kase, M. Yamamoto. Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or post-formational diagenesis?. Sediment. Geol., 154 (2003), pp. 159-175,
CrossRef
Google scholar
|
T. Oberthür. Age constraints on gold mineralization and Paleoproterozoic crustal evolution in the Ashanti belt of southern Ghana. Precambrian Res., 89 (1998), pp. 129-143,
CrossRef
Google scholar
|
Ossa , F., 2010. Etude multi-approches du bassin sédimentaire Paléoprotérozoïque (2.1–2.4 Ga) de Franceville au Gabon: les environnements sédimentaires et l’impact des paléocirculations de fluides. Ph.D. University of Poitiers, Poitiers, France, pp. 191 (in French).
|
F. Ossa, A. El Albani, A. Hofmann, A. Bekker, F. Gauthier-Lafaye, F. Pambo, A. Meunier, C. Fontaine, P. Boulvais, A.-C. Pierson-Wickmann, B. Cavalazzi, R. Macchiarelli. Exceptional preservation of expandable clay minerals in the ca. 2.1Ga black shales of the Francevillian basin, Gabon and its implication for atmospheric oxygen accumulation. Chem. Geol., 362 (2013), pp. 181-192,
CrossRef
Google scholar
|
F. Ossa, M.-L. Pons, A. Bekker, A. Hofmann, S.W. Poulton, M.B. Andersen, A. Agangi, D. Gregory, C. Reinke, B. Steinhilber, J. Marin-Carbonne, R. Schoenberg. Zinc enrichment and isotopic fractionation in a marine habitat of the c. 2.1 Ga Francevillian Group: A signature of zinc utilization by eukaryotes?. Earth Planet. Sci. Lett., 611 (2023), Article 118147,
CrossRef
Google scholar
|
F. Pambo, M. Guiraud, D. Quesne, F. Gauthier-Lafaye, G. Azzibrouck, J. Lang. The Proterozoic Franceville Basin (SE Gabon): an example of interaction between marine sedimentation and extensional faulting. Africa Geosci. Rev., 13 (2006), pp. 77-106
|
K. Pearson. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58 (1895), pp. 240-242
|
C.E. Petavratzi, G. Gunn, C. Kresse. Commodity Review. Cobalt. British Geol. Survey, 72pp (Mineral Commodity Profile) (2019)
|
Picazo-Rodriguez, N.G., Toro, N., Román, Marleth Roxana Garza, Soriano, D.A.T., Galleguillos Madrid, F.M., Jamett, I., Gálvez, E., Moreno Cedillos, J.G., 2023. Cobalt Metal: Overview of Deposits, Reserves, Processing, and Recycling. https://doi.org/10.20944/preprints202306.1368.v1.
|
W.G. Pierce. Cobalt-bearing manganese deposits of Alabama, Georgia, and Tennessee. U.S. Geol. Survey Bull., 940 (1944), pp. 265-285
|
A. Préat, P. Bouton, D. Thiéblemont, J.-P. Prian, S.S. Ndounze, F. Delpomdor. Paleoproterozoic high δ13C dolomites from the Lastoursville and Franceville basins (SE Gabon): Stratigraphic and synsedimentary subsidence implications. Precambrian Res., 189 (2011), pp. 212-228,
CrossRef
Google scholar
|
L.J. Robbins, M. Fakhraee, A.J.B. Smith, B.A. Bishop, E.D. Swanner, C.L. Peacock, C.-L. Wang, N.J. Planavsky, C.T. Reinhard, S.A. Crowe, T.W. Lyons. Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. Earth Sci. Rev., 239 (2023), Article 104368,
CrossRef
Google scholar
|
S. Roy. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth Sci. Rev., 77 (2006), pp. 273-305,
CrossRef
Google scholar
|
R.L. Rudnick, S. Gao. . R.L. Rudnick (Ed.), Treatise on Geochemistry, 3, Elsevier, Amsterdam (2003), pp. 1-64
|
Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust. In: Treatise on Geochemistry. Elsevier, pp. 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6.
|
S.S. Salgado, F.D.A. Caxito, G.N. Queiroga, M.P.D. Castro. Stratigraphy, petrography and tectonics of the manganese-bearing Buritirama Formation, Northern Carajás Domain. Amazon Craton. Braz. J. Geol., 49 (2019), Article e20180106,
CrossRef
Google scholar
|
Salgado, S.S., Caxito, F.D.A., Figueiredo E Silva, R.C., Uhlein, G.J., Nogueira, L.B., Júnior, H.A.N., De Oliveira Aranda, R., 2021. Metallogenetic Mn-model of the Rhyacian-aged Buritirama Formation, Carajás domain (Amazon Craton). Ore Geol. Rev. 138, 104396. https://doi.org/10.1016/j.oregeorev.2021.104396.
|
F.H.D. Santos, W.D.S. Amaral, K. Konhauser, D.T. Martins, M.P.D. Castro, G.N. Queiroga, E. Chi Fru, M.B. Andersen. Unraveling sedimentary precursors and metal enrichment of high-grade metamorphosed manganese-rich rocks from the Borborema Province, northeastern Brazil. Ore Geol. Rev., 137 (2021), Article 104283,
CrossRef
Google scholar
|
F.H. Santos, W. Da Silva Amaral, E. Chi-Fru, A.C.B. De Souza, A. Bosco-Santos. Paleoproterozoic manganese oxide precipitation in oxic seawater surface and reductive enrichment in anoxic seafloor. Chem. Geol., 588 (2022), Article 120655,
CrossRef
Google scholar
|
F.H. Santos, W. Da Silva Amaral, D.T. Martins, A.C.B. De Souza. Zircon U–Pb geochronology of manganese-rich rocks from the Borborema Province, Northeast Brazil: adding a new piece to the global inventory of Paleoproterozoic manganese mineralization. Miner. Deposita, 58 (2023), pp. 531-551,
CrossRef
Google scholar
|
F.H. Santos, W. Da Silva Amaral, E.C.U. Filho, F. De Andrade Caxito, A.C.B. Souza, D.T. Martins, B. De Andrade Feitosa. The origin and fate of organic carbon in graphite–manganese bearing rocks and implications for the Lomagundi–Jatuli Event. Sci. Rep., 14 (2024), p. 21191,
CrossRef
Google scholar
|
W. Scarpelli. The Serra do Navio manganese deposit (Brazil). Genesis of Precambrian iron and manganese deposits. Proc. Kiev Symp. Earth Sci., 9 (1973), pp. 17-228
|
A.J. Shortland, M.S. Tite, I. Ewart. Ancient exploitation and use of cobalt alums from the Western Oases of Egypt. Archaeometry, 48 (1) (2006), pp. 153-168
|
F. Slack, B.E. Kimball, K.B. Shedd. Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply (Professional Paper). Professional Paper. (2017)
|
Souza, J.V. de, Ribeira Filho, E., 1983. Geologia e Gênese dos Depósitos de Manganês da Província de Aracoiaba - Pacajús, Ceará. Rev. do Inst. de Geo. - USP, São Paulo, pp. 1–11.
|
H.-M. Su, S.-Y. Jiang, G. Chi, T. Sheng, Y.-L. Yin, T. Liu. Formation of the giant Luiswishi Cu-Co deposit in the Central African Copperbelt by Neoproterozoic syn-sedimentary-diagenetic processes overprinted by Pan-African orogenic mineralization events. Precambrian Res., 402 (2024), Article 107299,
CrossRef
Google scholar
|
A.K. Sweetman, A.J. Smith, D.S.W. De Jonge, T. Hahn, P. Schroedl, M. Silverstein, C. Andrade, R.L. Edwards, A.J.M. Lough, C. Woulds, W.B. Homoky, A. Koschinsky, S. Fuchs, T. Kuhn, F. Geiger, J.J. Marlow. Evidence of dark oxygen production at the abyssal seafloor. Nat. Geosci., 17 (2024), pp. 737-739,
CrossRef
Google scholar
|
F.M. Tavares, R.A.J. Trouw, C.M.G. da Silva, A.P. Justo, J.K.M. Oliveira. The multistage tectonic evolution of the northeastern Carajás Province, Amazonian Craton, Brazil: Revealing complex structural patterns. J. South Am. Earth Sci., 88 (2018), pp. 238-252,
CrossRef
Google scholar
|
Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution: an examination of the geochem. record preserved in sedimentary rocks, Geoscience texts. Blackwell, Oxford.
|
B.M. Tebo, J.R. Bargar, B.G. Clement, G.J. Dick, K.J. Murray, D. Parker, R. Verity, S.M. Webb. BIOGENIC MANGANESE OXIDES: Properties and Mechanisms of Formation. Annu. Rev. Earth Planet. Sci., 32 (2004), pp. 287-328,
CrossRef
Google scholar
|
. . D. Thiéblemont, C. Castaing, M. Billa, P. Bouton, A. Préat (Eds.), Notice explicative de la carte géologique et des ressources minérales de la République Gabonaise: Eds DGMC – Ministère des Mines, du Pétrole, des Hydrocarbures, Libreville (2009), p. 384
|
N. Toro, R.I. Jeldres, J.A. Órdenes, P. Robles, A. Navarra. Manganese Nodules in Chile, an Alternative for the Production of Co and Mn in the Future—A review. Minerals, 10 (2020), p. 674,
CrossRef
Google scholar
|
N. Tribovillard, T.J. Algeo, T. Lyons, A. Riboulleau. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol., 232 (2006), pp. 12-32,
CrossRef
Google scholar
|
O.V. Vasyukova, A.E. Williams-Jones. Constraints on the Genesis of Cobalt Deposits: Part II. Applications to Natural Systems. Econ. Geol., 117 (2022), pp. 529-544,
CrossRef
Google scholar
|
Wang, W., Jiang, S.Y., Chen, Z.P., Su, H.M., Li, H., He, S., n.d.. 2024. The origin and mineralization processes of the Dulenggou copper-cobalt deposit in the East Kunlun orogenic belt, western China. Ore Geol. Rev. 171, 106186. https://doi.org/10.1016/j.oregeorev.2024.106186.
|
F. Weber. Evolution of Lateritic Manganese Deposits. H. Paquet, N. Clauer (Eds.), Soils and Sediments, Springer, Berlin, Heidelberg (1997), pp. 97-124,
CrossRef
Google scholar
|
G. Zhao, M. Sun, S.A. Wilde, S. Li. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci. Rev., 67 (2004), pp. 91-123,
CrossRef
Google scholar
|
/
〈 |
|
〉 |