Implications of the newly discovered Triassic suites from the eastern segment in the giant Tongshan porphyry Cu deposit, northeast China
Chenglin Bai, Guiqing Xie, Yang Liu, Jie Chen, Qiaoqiao Zhu, Wei Li
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102034.
Implications of the newly discovered Triassic suites from the eastern segment in the giant Tongshan porphyry Cu deposit, northeast China
The Tongshan porphyry Cu deposit is well known as one of the most economically significant porphyry deposits in northeast China. Recently, Tongshan has become the largest porphyry Cu deposit in northeast China with the successful exploration of the concealed ore zone V. Ore zone V has the largest Cu tonnage (562 Mt @ 0.50% Cu) and extends into the eastern segment at Tongshan. Compared with ore zones I–III, which are hosted within granitic rocks in the western segment, the ore zone V mainly occurs in Duobaoshan volcanic rocks and the roof pendants of newly discovered intrusions. Here, we conducted a study of the understudied eastern ore zone and found that copper mineralization is associated with the newly discovered suites in the eastern segment at Tongshan. Two periods of ore-bearing quartz veins with different widths have been recognized, including quartz-chalcopyrite-pyrite veinlets (0.1–0.2 cm) and quartz-chalcopyrite-polymetallic sulfide wide veins (>0.5 cm). The latter veins can be divided into four stages (I–IV) of mineralization and alteration, which are closely related to the newly discovered granodiorite and dacite porphyry. Our new zircon U–Pb ages show that the granodiorite and dacite porphyry were developed between 228–223 Ma, suggesting that the overprinting porphyry copper mineralization occurred in the Triassic. The Triassic suites have adakite-like character with high Sr/Y, and show no or minimal negative Eu anomalies, indicating early dominant amphibole with limited plagioclase fractionation. For the Triassic intrusions, the high zircon Eu/Eu* (0.67–0.89), ΔFMQ (1.04 ± 0.53; where ΔFMQ is the log fO2 difference between the sample value and the fayalite-magnetite-quartz mineral buffer), hygrometer values (∼7.19 wt.% H2O) and high whole-rock Fe2O3/FeO, Sr/Y, V/Sc and 10,000×(Eu/Eu*)/Y ratios together indicate the Triassic magmas were oxidized and hydrous. These contents and ratios of the Triassic suites are significantly higher than those of the Ordovician suites (ΔFMQ = 0.74 ± 0.26, ∼5.90 wt.% H2O), suggesting that the newly discovered Triassic magmas are more oxidized and hydrous, with high potential for porphyry copper mineralization. Based on the investigation of mineralization and the above results, we proposed that multiple superimposed mineralizations can help form a large-scale deposit and the southeastern segment is a favorable exploration area at Tongshan.
Zircon U–Pb geochronology / Zircon compositions / Superimposed mineralization / Tongshan Cu deposit / Northeast China
C.L. Bai, G.Q. Xie, J.K. Zhao, W. Li, Q.Q. Zhu. Metallogenic characteristics and ore deposit model of Porphyry copper-epithermal gold system in Duobaoshan ore field, eastern margin of Central Asian orogenic belt. Earth Science Frontiers, 31 (2024), pp. 170-198
|
J.R. Ballard, M.J. Palin, I.H. Campbell. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol., 144 (2002), pp. 347-364
|
J. Berndt, J. Koepke, F. Holtz. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J. Petrol., 46 (2005), pp. 135-167
|
P.L. Blevin, B.W. Chappell. The role of magma sources, oxidation states and fractionation in determining the granitoid metallogeny of eastern Australia. Earth Env. Sci. T. R. So., 83 (1992), pp. 305-316
|
J.D. Blundy, B.J. Wood. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta, 55 (1991), pp. 193-209
|
W.Y. Cai, K.Y. Wang, J. Li, L.Y. Fu, C.K. Lai, H.L. Liu. Geology, geochronology and geochemistry of large Duobaoshan Cu–Mo–Au orefield in NE China: Magma genesis and regional tectonic implications. Geosci. Front., 12 (2021), pp. 265-292
|
K. Cao, Z.M. Yang, Z.Q. Hou, N.C. White, C. Yu. Contracting porphyry Cu fertilities in the Yidun arc, eastern Tibet: Insights from zircon and apatite compositions and implications for exploration. Society of Economic Geologists Special Publication, 24 (2021), pp. 231-255
|
I. Chambefort, J.H. Dilles, A.A. Longo. Amphibole geochemistry of the Yanacocha volcanics, Peru: Evidence for diverse sources of magmatic volatiles related to gold ores. J. Petrol., 54 (2013), pp. 1017-1046
|
C. Chelle-Michou, M. Chiaradia, M. Ovtcharova, A. Ulianov, J.F. Wotzlaw. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 198 (2014), pp. 129-140
|
D.R. Cooke, P. Hollings, J.L. Walsh. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol., 100 (2005), pp. 801-818
|
D.R. Cooke, J.J. Wilkinson, M. Baker, P. Agnew, J. Phillops, Z.S. Chang, H.Y. Chen, C.C. Wilinson, S. Inglis, P. Hollings, L.J. Zhang, J.B. Gemmell, N.C. White, L. Danyushevsky, H. Martin. Using mineral chemistry to aid exploration: A case study from the resolution porphyry Cu-Mo deposit, Arizona. Econ. Geol., 115 (2020), pp. 813-840
|
J.H. Dilles, A.J.R. Kent, J.L. Wooden, R.M. Tosdal, A. Koleszar, R.G. Lee, L.P. Farmer. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Econ. Geol., 110 (2015), pp. 241-251
|
M.J. Defant, M.S. Drummond. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res., 95 (1990), pp. 503-521
|
Q. Du, X.Y. Ma, C.M. Han, Z.Y. Li, X.L. Jiang. Genetic Discussion on Porphyry Copper Deposits. Geological Publishing House, Beijing, 97p (2010)
|
Du, Q., Zhao, Y.M., Lu, B.G., Ma, D.Y., Li, P.L., Lv, J.K., Li, W.S., Ao, L.Z., Cui, G., 1988. The Duobaoshan Porphyry Copper Deposit. Geological Publishing House, Beijing, 334 p. (in Chinese).
|
J. Ferry, E. Watson. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 154 (2007), pp. 429-437
|
R.F. Ge, S.A. Wilde, W.B. Zhu, X.L. Wang. Earth's early continental crust formed from wet and oxidizing arc magmas. Nature, 623 (2023), pp. 334-339
|
W.C. Ge, F.Y. Wu, C.Y. Zhou, J.H. Zhang. Porphyry Cu-Mo deposits in the eastern Xing'an–Mongolian Orogenic Belt: mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52 (2007), pp. 3416-3427
|
A. Goto, Y. Tatsumi. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (II). Rigaku Journal, 13 (1996), pp. 20-38
|
Y.J. Hao, Y.S. Ren, M.X. Duan, K.Y. Tong, C. Chen, Q. Yang, C. Li. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. J. Asian Earth Sci., 97 (2015), pp. 442-458
|
Y.J. Hao, Y.S. Ren, M.X. Duan, H.L. Zhao, K.X. Tong, Z.M. Sun. Tectonic setting of Triassic magmatic and metallogenic event in the Duobaoshan mineralization area of Heilongjiang Province, NE China. Geol. J., 52 (2017), pp. 67-91
|
C.J. Hart, R.J. Goldfarb, L.L. Lewis, J.L. Mair. The northern Cordilleran mid-Cretaceous plutonic province: Ilmenite/magnetite-series granitoids and intrusion-related mineralisation. Resour. Geol., 54 (2004), pp. 253-280
|
P.W. Hoskin, U. Schaltegger. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., 53 (2003), pp. 27-62
|
X.L. Hu, S.Z. Yao, Z.J. Ding, M.C. He. Early Paleozoic magmatism and metallogeny in Northeast China: a record from the Tongshan porphyry Cu deposit. Mineral. Deposita, 52 (2016), pp. 85-103
|
T.N. Irvine, W.R.A. Baragar. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8 (1971), pp. 523-548
|
S.Y. Jin, Y.J. Du, X.J. Ding, X.Y. Wang, Y. Liang, M. Tao, Z.D. Wang. Resource potential and deep prospecting direction in the Tongshan copper mine of the Duobaoshan ore field. Geol Explor., 50 (2014), pp. 666-674
|
R.G. Lee, J.H. Dilles, R.M. Tosdal, J.L. Wooden, F.K. Mazdab. Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons. Econ. Geol., 112 (2017), pp. 245-273
|
S.A. Liu, S. Li, Y. He, F. Huang. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu–Au mineralization. Geochim. Cosmochim. Acta, 74 (2010), pp. 7160-7178
|
Y. Liu, W. Li, Z. Feng, Q. Wen, F. Neubauer, C. Liang. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res., 43 (2017), pp. 123-148
|
M.A. Loader, J.J. Wilkinson, R.N. Armstrong. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett., 472 (2017), pp. 107-119
|
R.R. Loucks. Distinctive composition of copper-ore-forming arc magmas. Aust. J. Earth Sci., 61 (2014), pp. 5-16
|
R.R. Loucks, M.L. Fiorentini, G.J. Henríquez. New magmatic oxybarometer using trace elements in zircon. J. Petrol., 61 (2020), pp. 1-30
|
Y.J. Lu, R.R. Loucks, M. Fiorentini, T.C. McCuaig, N.J. Evans, Z.M. Yang, Z.Q. Hou, C.L. Kirkland, L.A. Parra-Avila, A. Kobussen. Zircon composition as a pathfnder for porphyry Cu ± Mo ± Au deposits. Soc. Econ. Geol. Special Publication, 19 (2016), pp. 329-347
|
Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, CA, Berkeley Geochronology Center, 74 p.
|
J.W. Mao, F. Pirajno, B. Lehmann, M.C. Luo, A. Berzina. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. J. Asian Earth Sci., 79 (2014), pp. 576-584
|
H. Martin, R.H. Smithies, R. Rapp, J.F. Moyen, D. Champion. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79 (2005), pp. 1-24
|
G.M. Moore, I.S.E. Carmichael. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth. Contrib. Mineral. Petrol., 130 (1998), pp. 304-319
|
Pang, X.Y., 2017. Identification of Concealed Intrusive-hydrothermal Center and Ore-controlling Structure Study of the Early Paleozoic Tongshan Porphyry Copper Deposit in Eastern Section of Central Asian Orogenic Belt. Ph.D Thesis. Jilin University, 30 p. (in Chinese with English abstract).
|
C. Paton, J.D. Woodhead, J.C. Hellstrom, J.M. Hergt, A. Greig, R. Maas. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst., 11 (2010), Article Q0AA06,
CrossRef
Google scholar
|
A. Peccerillo, S.R. Taylor. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58 (1976), pp. 63-81
|
F. Pirajno. The Geology and Tectonic Settings of China’s Mineral Deposits. Springer, Berlin (2013), p. 679
|
F. Pirajno, T.F. Zhou. Intracontinental porphyry and porphyry-skarn mineral systems in Eastern China: Scrutiny of a special case “Made-in-China”. Econ. Geol., 110 (2015), pp. 603-629
|
L. Qi, J. Hu, D.C. Gregoire. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51 (2000), pp. 507-513
|
H. Qu, C.L. Li, Z.H. Zhao, Z. Wang, J.F. Zhang. Zircon U–Pb ages and geochemical characteristics of the granites in Duobaoshan area, Northeast Da Hinggan Mountains. Geol. China, 38 (2011), pp. 292-300
|
O.M. Rabbia, K.J. Correa, L.B. Hernández, T. Ulrich. “Normal” to adakite-like arc magmatism associated with the El Abra porphyry copper deposit, Central Andes, northern Chile. Int. J. Earth Sci., 106 (2017), pp. 2687-2711
|
J.P. Richards. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Econ. Geol., 106 (2011), pp. 1075-1081
|
J.P. Richards. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233 (2015), pp. 27-45
|
J. Richards. Economic geology: Clues to hidden copper deposits. Nature Geosci., 9 (2016), pp. 195-196
|
J.P. Richards, R. Kerrich. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ. Geol., 102 (2007), pp. 537-576
|
J.P. Richards, T. Spell, E. Rameh, A. Razique, T. Fletcher. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ. Geol., 107 (2012), pp. 295-332
|
T.O. Rooney, P. Franceschi, C.M. Hall. Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation?. Contrib. Mineral. Petrol., 161 (2011), pp. 373-388
|
Y. Sano, K. Terada, T. Fukuoka. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: Lack of matrix dependency. Chem. Geol., 184 (2002), pp. 217-230
|
P. Shen, K. Hattori, H.D. Pan, S. Jackson, E. Seitmuratova. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt. Econ. Geol., 110 (2015), pp. 1861-1878
|
T.W. Sisson. Hornblende-melt trace-element partitioning measured by ion microprobe. Chem. Geol.1, 117 (1994), pp. 331-344
|
J. Skarmeta. Structural controls on alteration stages at the Chuquicamata copper-molybdenum deposit, Northern Chile. Econ. Geol., 116 (2020), pp. 1-28
|
S.S. Sun, W. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London. Spec. Pub., 42 (1989), pp. 313-345
|
W.D. Sun, M.X. Ling, S.L. Chung, X. Ding, X.Y. Yang, H.Y. Liang, W.M. Fan, R. Goldfarb, Q.Z. Yin. Geochemical constraints on adakites of different origins and copper mineralization. J. Geol., 120 (2012), pp. 105-120
|
A.J. Wilson, D.J. Cooke, B.J. Harper. The Ridgeway gold-copper deposit: A high-grade alkalic porphyry deposit in the Lachlan fold belt, New South Wales, Australia. Econ. Geol., 98 (2003), pp. 1637-1666
|
C. Wu, H. Chen, Y. Lu. Magmatic water content and crustal evolution control on porphyry systems: Insights from the Central Asian orogenic belt. J. Petrol., 62 (2021), pp. 1-15
|
F.Y. Wu, D.Y. Sun, W.C. Ge, Y.B. Zhang, M.L. Grant, S.A. Wilde, B.M. Jahn. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci., 41 (2011), pp. 1-30
|
F.Y. Wu, D.Y. Sun, H.M. Li, B.M. Jahn, S. Wilde. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol.1, 187 (2002), pp. 143-173
|
F.Y. Wu, G.C. Zhao, D.Y. Sun, S.A. Wilde, G.L. Zhang. The Hulan group: its role in the evolution of the central Asian orogenic belt of NE China. Isl. Arc., 16 (2007), pp. 156-172
|
G. Wu, Y.C. Chen, F.Y. Sun, J. Liu, G.R. Wang, B. Xu. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. J. Asian Earth Sci., 97 (2015), pp. 229-250
|
Xu, F.M., 2022. Three-dimensional Geological Modeling and Deep Metallogenic Prospectivity Modeling of Duobaoshan District in Heilongjiang Province. Ph.D. Thesis, China University of Geosciences, Beijing 183 p. (in Chinese with English abstract).
|
J.F. Xu, R. Shinjo, M.J. Defant, Q. Wang, R.P. Rapp. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust?. Geology, 30 (2002), pp. 1111-1114
|
X.M. Yang, D.R. Lentz. Chemical composition of rock-forming minerals in gold-related granitoid intrusions, southwestern New Brunswick, Canada: implications for crystallization conditions, volatile exsolution and fluorinechlorine activity. Contrib. Mineral. Petrol., 150 (2005), pp. 287-305
|
Q.D. Zeng, J.M. Liu, S.X. Chu, Y.B. Wang, Y. Sun, X.X. Duan, L.L. Zhou, W.J. Qu. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China and its geological significance. J. Asian Earth Sci., 79 (2014), pp. 895-909
|
C. Zhao, K.Z. Qin, G.X. Song, G.M. Li. Switch of geodynamic setting from the Paleo-Asian Ocean to the Mongol-Okhotsk Ocean: evidence from granitoids in the Duobaoshan ore field, Heilongjiang province, northeast China. Lithos, 336–337 (2019), pp. 202-220
|
X.Y. Zou, K.Z. Qin, X.L. Han, G.M. Li, N.J. Evans, Z.Z. Li, W. Yang. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth Planet. Sci. Lett., 506 (2019), pp. 87-96
|
/
〈 |
|
〉 |