A plate geodynamic game changer: Effects of the 66 Ma Chicxulub asteroid collision
Amit Segev, Nadav Wetzler, Craig O’Neill, Gideon Rosenbaum
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102032.
A plate geodynamic game changer: Effects of the 66 Ma Chicxulub asteroid collision
At the end of the Cretaceous period, 66 million years ago, the 7 − 19 km diameter Chicxulub asteroid hit the Yucatan Peninsula in Mexico, triggering global catastrophic environmental changes and mass extinction. The contributions of this event towards changes in plate and plume geodynamics are not fully understood. Here we present a range of geological observations indicating that the impact marked a tectonic turning point in the behavior of mantle plume and plate motion in the Caribbean region and worldwide. At a regional scale, the impact coincides with the termination of seafloor spreading in the Caribbean Ridge. Shortly after the Cretaceous–Paleogene transition, magmatism associated with the Caribbean Large Igneous Province waned, and intensive Paleogene volcanism was initiated. These events happened synchronously with anomalously high mid-ocean ridge magmatism worldwide and an abrupt change in the relative motion of the South American and North American tectonic plates. The evidence for such abrupt changes in plate kinematics and plume behavior raises the possibility that the Chicxulub impact triggered a chain of effects that modified melt reservoirs, subducting plates, mantle flows, and lithospheric deformation. To explain how an asteroid impact could modify tectonic behavior, we discuss two end-member mechanisms: quasi-static and dynamic triggering mechanisms. We designed a numerical model to investigate the strain field and the relative plate motion before and after the impact. The model predicts an enhanced deformation associated with the impact, which surficially tapers off ∼ 500 km from the crater. The impact modifies the subjacent mantle flow field, contributing to long-term mantle-driven dynamic changes. Additionally, deformation associated with seismic effects may have contributed to far-field effects and global changes. We conclude that large asteroid impacts, such as the Chicxulub collision, could trigger cascading effects sufficient to disrupt and significantly modify plate geodynamics.
Chicxulub asteroid / Cretaceous–Paleogene boundary / Mantle plume / Plate tectonics / Global geodynamics
L. Alegret, I. Arenillas, J.A. Arz, C. Díaz, J.M. Grajales-Nishimura, A. Meléndez, E. Molina, R. Rojas, A.R. Soria. Cretaceous-Paleogene boundary deposits at Loma Capiro, central Cuba: evidence for the Chicxulub impact. Geology, 33 (2005), pp. 721-724
|
G.E. Alvarado, C. Dengo, U. Martens, J. Bundschuh, T. Aguilar, S.B. Bonis. Stratigraphy and geologic history: Central America. Geol. Resour. Hazzards, 2 (2007), pp. 345-394
|
L.W. Alvarez, W. Alvarez, F. Asaro, H.V. Michel. Extraterrestrial cause for the cretaceous-tertiary extinction. Science, 208 (1980), pp. 1095-1108
|
W. Alvarez, J. Smit, W. Lowrie, F. Asaro, S.V. Margolis, P. Claeys, M. Kastner, A.R. Hildebrand. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540. Geology, 20 (1992), pp. 697-700
|
C.V. Barrera-Lopez, W.D. Mooney, M.K. Kaban. Regional geophysics of the Caribbean and northern South America: implications for tectonics. Geochem. Geophys. Geosyst., 23 (2022), Article e2021GC010112
|
G.C. Bhattacharya, V. Yatheesh. Plate-tectonic evolution of the deep ocean basins adjoining the western continental margin of India – a proposed model for the early opening scenario. S. Mukherjee (Ed.), Petroleum Geoscience: Indian Contexts, Springer (2015), pp. 1-61
|
Bird, P., 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027. doi:1010.1029/2001GC000252.
|
X. Borgeat, P.J. Tackley. Hadean/Eoarchean tectonics and mantle mixing induced by impacts: a three-dimensional study. Prog. Earth Planet. Sci., 9 (1) (2022), p. 38,
CrossRef
Google scholar
|
L.M. Boschman, D.J.J. van Hinsbergen, T.H. Torsvik, W. Spakman, J.L. Pindell. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth Sci. Revi., 138 (2014), pp. 102-136
|
J. Bourgeois, T.A. Hansen, P.L. Wiberg, E.G. Kauffmann. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science, 241 (1988), pp. 567-570
|
C.L. Bowland, E. Rosencrantz. Upper crustal structure of the western Colombian Basin, Caribbean Sea. Geol. Soc. Am. Bull., 100 (1988), pp. 534-546
|
T. Bralower, L. Eccles, J. Kutz, T. Yancey, J. Schueth, M. Arthur, D. Bice. Grain size of Cretaceous-Paleogene boundary sediments from Chicxulub to the open ocean: implications for interpretation of the mass extinction event. Geology, 38 (2010), pp. 199-202
|
Bralower, T.J., Paull, C.K., Mark Leckie, R., 1998. The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology 26, 331-334.
|
Brodsky, E. E., Prejean, S. G., 2005. New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera. J. Geophys. Res. Solid Earth 110 (B4), B04302. https://doi.org/10.1029/2004JB003211.
|
E.E. Brodsky, B. Sturtevant, H. Kanamori. Earthquakes, volcanoes, and rectified diffusion. J. Geophys. Res. Solid Earth, 103 (1998), pp. 23827-23838
|
J.S. Byrnes, L. Karlstrom. Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism. Sci. Adv., 4 (2018), Article eaao2994
|
S.C. Cande, P. Patriat. The anticorrelated velocities of Africa and India in the late Cretaecous and early Cenozoic. Geophys. J. Int., 200 (1) (2015), pp. 227-243
|
S.C. Cande, D.R. Stegman. Indian and African plate motions driven by the push force of the Reunion plume head. Nature, 475 (2011), pp. 47-52
|
M.R. Carvalho, C. Jaramillo, F. de la Parra, D. Caballero-Rodríguez, F. Herrera, S. Wing, B.L. Turner, C. D’Apolito, M. Romero-Báez, P. Narváez, C. Martínez, M. Gutierrez, C. Labandeira, G. Bayona, M. Rueda, M. Paez-Reyes, D. Cárdenas, Á. Duque, J.L. Crowley, C. Santos, D. Silvestro. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372 (2021), pp. 63-68
|
A.A. Chiarenza, S.L. Brusatte. Dinosaurs, extinction theories for. S. Scheiner (Ed.), Encyclopedia of Biodiversity (Third Edition), Elsevier, Oxford (2024), pp. 298-309
|
Day, S., Maslin, M., 2005. Linking large impacts, gas hydrates, and carbon isotope excursions through widespread sediment liquefaction and continental slope failure. The example of the KT boundary event. In: Kenkmann, T., Hörz, F., Deutsch, A., (Eds.), Large meteorite impacts III, Volume 384: Boulder, Geological Society of America Special Paper, p. 239-258.
|
G.S. Collins, N. Patel, T.M. Davison, A.S. Rae, J.V. Morgan, S.P.S. Gulick. A steeply-inclined trajectory for the Chicxulub impact. Nat. Commun., 11 (2020), p. 1480
|
R.A. Denne, E.D. Scott, D.P. Eickhoff, J.S. Kaiser, R.J. Hill, J.M. Spaw. Massive Cretaceous-Paleogene boundary deposit, deep-water Gulf of Mexico: new evidence for widespread Chicxulub-induced slope failure. Geology, 41 (2013), pp. 983-986
|
R.A. DePalma, J. Smit, D.A. Burnham, K. Kuiper, P.L. Manning, A. Oleinik, P. Larson, F.J. Maurrasse, J. Vellekoop, M.A. Richards, L. Gurche. A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proc. Natl. Acad. Sci. USA, 116 (17) (2019), pp. 8190-8199
|
A.I. Despaigne-Díaz, A. García-Casco, D. Cáceres Govea, F. Jourdan, S.A. Wilde, G. Millán Trujillo. Twenty-five million years of subduction-accretion-exhumation during the Late Cretaceous-Tertiary in the northwestern Caribbean: the Trinidad Dome, Escambray Complex, Central Cuba. Am. J. Sci., 316 (2016), pp. 203-240
|
P.V. Doubrovine, B. Steinberger, T.H. Torsvik. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. Solid Earth, 117 (2012), Article B09101
|
Drachev, S., Saunders, A., Scott, R. A., Thurston, D. K., 2006. The Early Cretaceous Arctic LIP: its geodynamic setting and implications for Canada Basin opening. In: Scott, R. A., Thurston, D. K., (Eds.), Proceedings of the Fourth International Conference on Arctic Margins, Volume 30: Dartmouth, Nova Scotia, p. 216-223.
|
N.W. Driscoll, G.D. Karner. Lower crustal extension across the Northern Carnarvon basin, Australia: evidence for an eastward dipping detachment. J. Geophys. Res., 103 (1998), pp. 4975-4992
|
J. Dyment, A. Garcia-Reyes. The Yucatan Basin, a complex oceanic basin triggered by the Chicxulub impact?. AGU Fall Meeting (2022), pp. T15C-T
|
D. Elbeshausen, K. Wünnemann. The effect of target topography and impact angle on crater formation—insight from 3D numerical modelling. Lunar and Planetary Institute Science Conference Abstracts (2011. March), p. 1778
|
L.T. Elkins-Tanton, B.H. Hager. Giant meteoroid impacts can cause volcanism. Earth Planet. Sci. Lett., 239 (3–4) (2005), pp. 219-232,
CrossRef
Google scholar
|
R.E. Ernst, D.P.G. Bond, S. Zhang, K.L. Buchan, S.E. Grasby, N. Youbi, H. El Bilali, A. Bekker, L.S. Doucet. Large igneous province record through time and implications for secular environmental changes and geological time-scale boundaries. R.E. Ernst, A.J. Dickson, A. Bekker (Eds.), Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, American Geophysical Union (2021), pp. 1-26
|
J. Escuder-Viruete, A. Pérez-Estaún, M. Joubert, D. Weis. The Pelona-Pico Duarte basalts Formation, Central Hispaniola : an on-land section of Late Cretaceous volcanism related to the Caribbean large igneous province. Geologica Acta, 9 (2011), pp. 307-328
|
W. Fan, P.M. Shearer. Fault interactions and triggering during the 10 January 2012 Mw 7.2 Sumatra earthquake. Geophys. Res. Lett., 43 (2016), pp. 1934-1942
|
A.M. Freed. Earthquake triggering by static, dynamic, and postseismic stress transfer. Ann. Rev. Earth Planet. Sci., 33 (2005), pp. 335-367,
CrossRef
Google scholar
|
C. Gaina, S. Medvedev, T.H. Torsvik, I. Koulakov, S.C. Werner. 4D Arctic: a glimpse into the structure and evolution of the arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surveys Geophys., 35 (2014), pp. 1095-1122
|
A. García-Casco, M.A. Iturralde-Vinent, J. Pindell. Latest Cretaceous collision/accretion between the Caribbean Plate and Caribeana: origin of metamorphic terranes in the Greater Antilles. Int. Geo. Rev., 50 (2008), pp. 781-809
|
A. Garcia-Reyes, J. Dyment. Structure, age, and origin of the Caribbean Plate unraveled. Earth Planet. Sci. Lett., 571 (2021), Article 117100
|
G. Giunta, L. Beccaluva, M. Coltorti, D. Mortellaro, F. Siena, D. Cutrupia. The peri-Caribbean ophiolites: structure, tectono-magmatic significance and geodynamic implications. Caribbean J. Earth Sci., 36 (2002), pp. 1-20
|
P. Glišović, A.M. Forte. On the deep-mantle origin of the Deccan Traps. Science, 355 (6325) (2017), pp. 613-616,
CrossRef
Google scholar
|
J. Gomberg, M.L. Blanpied, N.M. Beeler. Transient triggering of near and distant earthquakes. Bull. Seismol. Soc. Am., 87 (2) (1997), pp. 294-309,
CrossRef
Google scholar
|
Á.M. Gómez-García, E. Le Breton, M. Scheck-Wenderoth, G. Monsalve, D. Anikiev. The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models. Solid Earth, 12 (2021), pp. 275-298
|
J.L. Granja Bruña, A. Carbo Gorosabel, P. Llanes Estrada, A. Munoz Martin, U.S. ten Brink, M. Gomez Ballesteros, M. Druet, A. Pazos. Morphostructure at the junction between the Beata Ridge and the Greater Antilles island arc (offshore Hispaniola southern slope). Tectonophysics, 618 (2014), pp. 138-163
|
S.P.S. Gulick, T.J. Bralower, J. Ormö, B. Hall, K. Grice, B. Schaefer, S. Lyons, K.H. Freeman, J.V. Morgan, N. Artemieva, P. Kaskes, S.J. de Graaff, M.T. Whalen, G.S. Collins, S.M. Tikoo, C. Verhagen, G.L. Christeson, P. Claeys, M.J.L. Coolen, S. Goderis, K. Goto, R.A.F. Grieve, N. McCall, G.R. Osinski, A.S.P. Rae, U. Riller, J. Smit, V. Vajda, A. Wittmann. The first day of the Cenozoic. Proc. Natl. Acad. Sci. USA, 116 (2019), pp. 19342-19351
|
Harrison, K.G., 2017. Using impact exsolution to link the Chicxulub collision and Deccan volcanism: arXiv preprint arXiv:1701.04704.
|
A.R. Hildebrand, G.T. Penfield, D.A. Kring, M. Pilkington, Z. Camargo, S.B. Jacobsen, W.V. Boynton. Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology, 19 (1991), pp. 867-871
|
(2002), pp. S72F-S
|
M.A. Iturralde-Vinent, A. García-Casco, Y. Rojas-Agramonte, J.A. Proenza, B. Murphy, R.J. Stern. The geology of Cuba: a brief overview and synthesis. GSA Today, 26 (2016), pp. 4-10
|
K. Irikura, S. Kurahash. Strong Ground Motions during the 2011 Pacific Coast Off Tohoku. Japan Earthquake, 1 (2012), pp. 1-49
|
B.A. Ivanov. Numerical modeling of the largest terrestrial meteorite craters. Solar System Res., 39 (2005), pp. 426-456
|
K.H. James. Arguments for and against the Pacific origin of the Caribbean Plate: discussion, finding for an inter-American origin. Geol. Acta, 4 (2006), pp. 279-302
|
S. James, S.R. Chandran, J. Aswathi, D. Padmakumar, K.S. Sajinkumar. Geologic, geomorphic, tectonic, and paleoclimatic controls on the distribution and preservation of Chicxulub distal ejecta: a global perspective. Earth-Sci. Rev., 244 (2023), Article 104545
|
B.C. Johnson, H.J. Melosh. Impact spherules as a record of an ancient heavy bombardment of Earth. Nature, 485 (2012), pp. 75-77
|
A.C. Kerr, M.A. Iturralde-Vinent, A.D. Saunders, T.L. Babbs, J. Tarney. A new plate tectonic model of the Caribbean implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks. Geol. Soc. Am. Bull., 111 (1999), pp. 1581-1599
|
G.C.P. King, R.S. Stein, J. Lin. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am., 84 (1994), pp. 935-953
|
A.A.P. Koppers, T.W. Becker, M.G. Jackson, K. Konrad, R.D. Müller, B. Romanowicz, B. Steinberger, J.M. Whittaker. Mantle plumes and their role in Earth processes. Nature Rev. Earth Environ., 2 (2021), pp. 382-401
|
M. Kronbichler, T. Heister, W. Bangerth. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int., 191 (2012), pp. 12-29
|
J.F. Lewis, G. Draper. Geology and tectonic evolution of the northern Caribbean margin. G. Dengo, J.E. Case (Eds.), The Caribbean Region: Boulder, Geological Society of America, Colorado (1990), pp. 77-140
|
A.A. Macêdo Filho, M.H.B.M. Hollanda, S. Fraser, A.L. Oliveira, A.C.C. Melo, A.R. Dantas. Correlations among large igneous provinces related to the West Gondwana breakup: a geochemical database reappraisal of Early Cretaceous plumbing systems. Geosci. Front., 14 (2023), Article 101479
|
H. Maluski, C. Coulon, M. Popoff, P. Baudin. 40Ar/39Ar chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough Nigeria. J. Geol. Soc., 152 (1995), pp. 311-326
|
M. Manga, E. Brodsky. Seismic triggering of eruptions in the far field: volcanoes and geysers. Ann. Rev. Earth Planet. Sci., 34 (2006), pp. 263-291
|
K.J. Matthews, K.T. Maloney, S. Zahirovic, S.E. Williams, M. Seton, R.D. Müller. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change, 146 (2016), pp. 226-250
|
Mauffret, A., Leroy, S., 1999. Neogene intraplate deformation of the Caribbean plate at the Beata Ridge. Sedimentary basins of the world, Volume 4, Elsevier, p. 627-669.
|
A. Mauffret, S. Leroy, J.-M. Vila, E. Hallot, B. Mercier de Lépinay, R.A. Duncan. Prolonged magmatic and tectonic development of the Caribbean Igneous Province revealed by a diving submersible survey. Marine Geophys. Res., 22 (2001), pp. 17-45
|
Menzies, M.A., Klemperer, S.L., Ebinger, C.J., Baker, J., 2002. Characteristics of volcanic rifted margins. In: Menzies, M. A., Klemperer, S. L., Ebinger, C. J., Baker, J., (Eds.), Volcanic Rifted Margins, Volume 362: Boulder. Geological Society of America Special Paper, p. 1-14.
|
M.A. Meschede, C.L. Myhrvold, J. Tromp. Antipodal focusing of seismic waves due to large meteorite impacts on Earth. Geophys. J. Int., 187 (2011), pp. 529-537
|
R. Meyer, J. van Wijk, L. Gernigon. . G.R. Foulger, D.M. Jurdy (Eds.), Plates, Plumes, and Planetary Processes, 430, Geological Society of America Special Paper (2007), pp. 525-552
|
A.A. Misra, N. Sinha, S. Mukherjee. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine Petrol. Geol., 59 (2015), pp. 406-428
|
Mittal, T., Sprain, C.J., Renne, P.R., Richards, M.A., 2022. Deccan volcanism at K-Pg time. In: Koeberl, C., Claeys, P., Montanari, A., (Eds.), From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez: Geological Society of America Special Paper 557, p. 471–496, https://doi.org/10.1130/2022.2557(22).
|
Morgan, J., Warner, M., the Chicxulub Working, G., Brittan, J., Buffler, R., Camargo, A., Christeson, G., Denton, P., Hildebrand, A., Hobbs, R., Macintyre, H., Mackenzie, G., Maguire, P., Marin, L., Nakamura, Y., Pilkington, M., Sharpton, V., Snyder, D., Suarez, G., Trejo, A., 1997. Size and morphology of the Chicxulub impact crater. Nature 390, 472-476.
|
S. Mukherjee, G. Dole, V. Yatheesh, V. Kale. Tectonics of the Deccan trap: focus on Indian Geoscientists’ contribution in the last four years. Proc. Indian Nat. Sci. Academy, 86 (2020), pp. 237-244
|
R.D. Müller, S. Zahirovic, S.E. Williams, J. Cannon, M. Seton, D.J. Bower, M.G. Tetley, C. Heine, E. Le Breton, S. Liu, S.H.J. Russell, T. Yang, J. Leonard, M. Gurnis. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38 (2019), pp. 1884-1907
|
A. Namiki, E. Rivalta, H. Woith, T.R. Walter. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions. J. Volcanol. Geotherm. Res., 320 (2016), pp. 156-171
|
R.D. Norris, J. Firth, J.S. Blusztajn, G. Ravizza. Mass failure of the North Atlantic margin triggered by the Cretaceous-Paleogene bolide impact. Geology, 28 (2000), pp. 1119-1122
|
C. O’Neill, S. Marchi, S. Zhang, W. Bottke. Impact-driven subduction on the Hadean Earth. Nature Geosci., 10 (10) (2017), pp. 793-797
|
C. O’Neill, S. Marchi, W. Bottke, R. Fu. The role of impacts on Archaean tectonics. Geology, 48 (2020), pp. 174-178
|
A. Peace, K. McCaffrey, J. Imber, J. Phethean, G. Nowell, K. Gerdes, E. Dempsey. An evaluation of Mesozoic rift-related magmatism on the margins of the Labrador Sea: implications for rifting and passive margin asymmetry. Geosphere, 12 (2016), p. 6,
CrossRef
Google scholar
|
J.L. Pindell. Evolution of the Gulf of Mexico and the Caribean. S.K. Donavan, T.A. Jackson (Eds.), Caribbean Geology: an Introduction, The University of the West Indies Publishers’ Assoiciation, Kingston, Jamaica (1994), pp. 13-39
|
M.M. Range, B.K. Arbic, B.C. Johnson, T.C. Moore, V. Titov, A.J. Adcroft. The Chicxulub impact produced a powerful global tsunami. AGU Advances, 3 (2022), Article e2021AV000627,
CrossRef
Google scholar
|
P.R. Renne, C.J. Sprain, M.A. Richards, S. Self, L. Vanderkluysen, K. Pande. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350 (2015), pp. 76-78
|
S. Révillon, E. Hallot, N.T. Arndt, C. Chauvel, R.A. Duncan. A complex history for the Caribbean Plateau petrology, geochemistry, and geochronology of the Beata Ridge, South Hispaniola. J. Geol., 108 (2000), pp. 641-661
|
M.A. Richards, W. Alvarez, S. Self, L. Karlstrom, P.R. Renne, M. Manga, C.J. Sprain, J. Smit, L. Vanderkluysen, S.A. Gibson. Triggering of the largest Deccan eruptions by the Chicxulub impact. Geol. Soc. Am. Bull., 127 (2015), pp. 1507-1520
|
J.H. Roberts, J. Arkani-Hamed. Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res., 119 (2014), pp. 729-744,
CrossRef
Google scholar
|
J. Sanchez, P. Mann, L.C. Carvajal-Arenas, R. Bernal-Olaya. Regional transect across the western Caribbean Sea based on integration of geologic, seismic reflection, gravity, and magnetic data. AAPG Bulletin, 103 (2019), pp. 303-343
|
J.C. Sanford, J.W. Snedden, S.P.S. Gulick. The Cretaceous-Paleogene boundary deposit in the Gulf of Mexico: large-scale oceanic basin response to the Chicxulub impact. J. Geophys. Res. Solid Earth, 121 (2016), pp. 1240-1261
|
J.-G. Schilling, B.B. Hanan, B. McCully, R.H. Kingsley, D. Fontignie. Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: A Nd-Sr-Pb isotopic study. J. Geophys. Res. Solid Earth, 99 (1994), pp. 12005-12028
|
P. Schulte, L. Alegret, I. Arenillas, J.A. Arz, P.J. Barton, P.R. Bown, T.J. Bralower, G.L. Christeson, P. Claeys, C.S. Cockell, G.S. Collins, A. Deutsch, T.J. Goldin, K. Goto, J.M. Grajales-Nishimura, R.A.F. Grieve, S.P.S. Gulick, K.R. Johnson, W. Kiessling, C. Koeberl, D.A. Kring, K.G. MacLeod, T. Matsui, J. Melosh, A. Montanari, J.V. Morgan, C.R. Neal, D.J. Nichols, R.D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W.U. Reimold, E. Robin, T. Salge, R.P. Speijer, A.R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M.T. Whalen, P.S. Willumsen. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327 (2010), pp. 1214-1218
|
C.R. Scotese, H. Song, B.J.W. Mills, D.G. van der Meer. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years. Earth Sci. Rev., 215 (2021), Article 103503
|
A. Segev. Synchronous magmatic cycles during the fragmentation of Gondwana: radiometric ages from the Levant and other provinces. Tectonophysics, 325 (2000), pp. 257-277
|
Segev, A., 2002. Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes). In: Cloetingh, S. A. P. L., Ben-Avraham, Z., (Eds.), From continental extension to collision: Africa–Europe interaction, the Dead Sea rift and analogue natural laboratories, Volume 2, European Geosciences Union, p. 171–191.
|
H. Sheth, K. Pande, A. Vijayan, K.K. Sharma, C. Cucciniello. Recurrent Early Cretaceous, Indo-Madagascar (89–86Ma) and Deccan (66Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance. Lithos, 284–285 (2017), pp. 512-524
|
Sigurdsson, H., Leckie, R.M., Acton, G.D., 1997. Caribbean ocean history and the Cretaceous/Tertiary boundary event. Proceedings of the Ocean Drilling Program, Initial reports, Texas A&M University, Ocean Drilling Program.
|
J. Smit. The global stratigraphy of the Cretaceous Tertiary boundary impact ejecta. Ann. Rev. Earth Planet. Sci., 27 (1999), pp. 75-113
|
M. Sommer, H. Hüneke, M. Meschede, J. Cobiella-Reguera. Geodynamic model of the northwestern Caribbean: Scaled reconstruction of Late Cretaceous to Late Eocene plate boundary relocation in Cuba. Neues Jahrbuch Für Geologie Und Paläontologie - Abhandlungen, 259 (2011), pp. 299-312
|
Spray, 2023, Earth Impact Database. http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Diametersort.html.
|
K.P. Stanek. Geotektonische Entwicklung Kubas, Freiberg. Technische Universität Bergakademie Freiberg, Freiberger Forschungshefte (2000), p. 164
|
K.P. Stanek, W.V. Maresch, J.L. Pindell. The geotectonic story of the northwestern branch of the Caribbean Arc: implications from structural and geochronological data of Cuba. Geol. Soc. London Spe. Pub., 328 (2009), pp. 361-398
|
B. Steinberger, E. Bredow, S. Lebedev, A. Schaeffer, T.H. Torsvik. Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume. Nature Geosci., 12 (2019), pp. 61-68
|
D.F. Sumy, E.S. Cochran, K.M. Keranen, M. Wei, G.A. Abers. Observations of static Coulomb stress triggering of the November 2011 M 5.7 Oklahoma earthquake sequence. J. Geophys. Res. Solid Earth, 119 (3) (2014), pp. 1904-1923,
CrossRef
Google scholar
|
S. Toda, R.S. Stein, K. Richards-Dinger, S.B. Bozkurt. Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J. Geophys. Res. Solid Earth, 110 (5) (2005), pp. 1-17,
CrossRef
Google scholar
|
T.H. Torsvik, B. Steinberger, M. Gurnis, C. Gaina. Plate tectonics and net lithosphere rotation over the past 150My. Earth Planet. Sci. Lett., 291 (2010), pp. 106-112
|
T.H. Torsvik, R. Van der Voo, U. Preeden, C. Mac Niocaill, B. Steinberger, P.V. Doubrovine, D.J.J. van Hinsbergen, M. Domeier, C. Gaina, E. Tohver, J.G. Meert, P.J.A. McCausland, L.R.M. Cocks. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev., 114 (2012), pp. 325-368
|
G. Toyokuni, T. Matsuno, D. Zhao. P wave tomography beneath greenland and surrounding regions: 1. Crust and Upper Mantle. J. Geophys. Res. Solid Earth, 125 (2020), Article e2020JB019837
|
M. Tsekhmistrenko, K. Sigloch, K. Hosseini, G. Barruol. A tree of Indo-African mantle plumes imaged by seismic tomography. Nature Geosci., 14 (8) (2021), pp. 612-619
|
D.G. van der Meer, W. Spakman, D.J.J. van Hinsbergen, M.L. Amaru, T.H. Torsvik. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci., 3 (2010), pp. 36-40
|
P.R. Vogt, O.E. Avery. Detailed magnetic surveys in the Northeast Atlantic and Labrador Sea. J. Geophy. Res., 79 (1974), pp. 363-389,
CrossRef
Google scholar
|
T.R. Walter, F. Amelung. Volcanic eruptions following M≥ 9 megathrust earthquakes: Implications for the Sumatra-Andaman volcanoes. Geology, 35 (2007), pp. 539-542
|
C.Y. Wang, M. Manga. Hydrologic responses to earthquakes and a general metric. Geofluids, 10 (1–2) (2010), pp. 206-216,
CrossRef
Google scholar
|
S.F. Watt, D.M. Pyle, T.A. Mather. The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet. Sci. Lett., 277 (2009), Article 99–407.
|
D.L. Wells, K.J. Coppersmith. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 844 (1994), pp. 974-1002
|
D.P.J. West, R.N.J. Abbott, B.R. Bandy, M.J. Kunk. Protolith provenance and thermotectonic history of metamorphic rocks in eastern Jamaica: evolution of a transform plate boundary. Geol. Soc. Am. Bull., 126 (2014), pp. 600-614
|
N. Wetzler, E.E. Brodsky, T. Lay. Regional and stress drop effects on aftershock productivity of large megathrust earthquakes. Geophys. Res. Lett., 43 (2016), Article 12012–12020
|
N. Wetzler, T. Lay, E.E. Brodsky, H. Kanamori. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes. Sci. Adv., 4 (2) (2018), p. eaao3225,
CrossRef
Google scholar
|
S.A. Whattam, R.J. Stern. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: the first documented example with implications for the onset of plate tectonics. Gondwana Res., 27 (2015), pp. 38-63
|
/
〈 |
|
〉 |