Geochemical cycling, tectonic drivers and environmental impacts of CH4-rich mud extrusions in subduction zones

Umair Khan, Shiguo Wu, Majid Khan, Jinwei Gao, Junjin Chen

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102029.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102029. DOI: 10.1016/j.gsf.2025.102029

Geochemical cycling, tectonic drivers and environmental impacts of CH4-rich mud extrusions in subduction zones

Author information +
History +

Abstract

Subduction zones are critical interfaces for lithospheric volatile fluxes, where complex tectonic and geochemical interactions facilitate the release of gases and fluids from deep-seated reservoirs within the Earth’s crust. Mud volcanism, as a dynamic manifestation of these processes, contributes CH4 emissions that influence the global methane budget and impact marine ecosystems. Although ∼2000 CH4-rich mud extrusions have been documented in subduction zones globally, the geological origins and subduction-related geochemical and tectonic mechanisms driving these emissions remain poorly understood. This research examines the Makran subduction zone which hosts one of the world’s largest accretionary wedge and extensive CH4-rich mud extrusions, as a model system. Integrated geochemical, geophysical, and geological observations reveal that thermogenic CH4 and clay-rich fluidized muds originate from deeply buried Himalayan turbidites (underthrusted sediments), driven by organic-rich sediment maturation and high fluid overpressure. Key tectonic features, including thrust faults, overburden pressure of wedge-top sediments, normal faults, brittle fractures, and seismicity, facilitate CH4-rich mud extrusions into the hydrosphere and atmosphere. The extruded gases are predominantly CH4, with minor C2H6, C3H8, i-C4H10, and n-C4H10 while the mud breccia exhibits a chemical composition dominated by SiO2, Al2O3, and Fe2O3, enriched with trace elements (Rb, Zr, and V) and clay minerals, quartz, and carbonates. Geochemical indicators suggest intense chemical weathering and mature sediments classifying the mud breccia as litharenite and sub-litharenite, indicative of deep burial and compaction. These findings model the evolution of CH4-rich mud extrusions through three geological stages: (i) Eocene to Early Miocene pre-thermogenic formation of the CH4-rich source, (ii) Middle Miocene to Pliocene syn-thermogenic CH4 and fluidized mud generation, and (iii) Pleistocene to Recent post-thermogenic CH4-rich fluidized mud migration. These findings underscore the critical yet often overlooked role of subduction-related geochemical and tectonic processes in CH4 generation and emission, with significant implications for the global CH4 budget and marine ecosystems.

Keywords

CH4 / Mud volcanoes / Geochemical cycling / Subduction zones

Cite this article

Download citation ▾
Umair Khan, Shiguo Wu, Majid Khan, Jinwei Gao, Junjin Chen. Geochemical cycling, tectonic drivers and environmental impacts of CH4-rich mud extrusions in subduction zones. Geoscience Frontiers, 2025, 16(3): 102029 https://doi.org/10.1016/j.gsf.2025.102029

CRediT authorship contribution statement

Chuanming Liu: Conceptualization, Methodology, Software, Writing – original draft. Chang Tang: Resources, Data curation, Writing – review & editing, Visualization. Yiding Liu: Software, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors acknowledge financial support from the National Social Science Fund of China (22CJL004). The usual disclaimer applies.

References

B. Antonielli, O. Monserrat, M. Bonini, G. Righini, F. Sani, G. Luzi, A.A. Feyzullayev, C.S. Aliyev. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics, 637 (2014), pp. 163-177
M. Asada, G.F. Moore, K. Kawamura, T. Noguchi. Mud volcano possibly linked to seismogenic faults in the Kumano Basin, Nankai Trough, Japan. Marine Geophys. Res., 42 (2021), pp. 1-16
M.F. Babadi, B. Mehrabi, F. Tassi, J. Cabassi, O. Vaselli, A. Shakeri, E. Pecchioni, S. Venturi, M. Zelenski, I. Chaplygin. Origin of fluids discharged from mud volcanoes in SE Iran. Marine Petrol. Geol., 106 (2019), pp. 190-205
E. Baloglanov, O. Abbasov, R. Akhundov. Mud volcanoes of the world: classifications, activities and environmental hazard (informational-analytical review). Eur. J. Nat. Hist., 5 (2018), pp. 12-26
P. Barnes, I. Pecher, L. LeVay. Expedition 372 scientific prospectus: Creeping gas hydrate slides and LWD for Hikurangi subduction margin. Sci., Prospectus (2017), p. 372
P.M. Barnes, G. Lamarche, J. Bialas, S. Henrys, I. Pecher, G.L. Netzeband, J. Greinert, J.J. Mountjoy, K. Pedley, G. Crutchley. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geol., 272 (2010), pp. 26-48
B.B. Bernard, J.M. Brooks, W.M. Sackett. Light hydrocarbons in recent Texas continental shelf and slope sediments. J. Geophys. Res. Oceans, 83 (1978), pp. 4053-4061
binti Yussibnosh, J., Viswanathan, P.M., Valappil, N.K.M., 2023. Geochemical evaluation of mud volcanic sediment and water in Northern Borneo: A baseline study. Total Environ. Res. Themes 6, 100033.
K. Brown, G. Westbrook. Mud diapirism and subcretion in the Barbados Ridge accretionary complex: the role of fluids in accretionary processes. Tectonics, 7 (1988), pp. 613-640
M. Busetti, R. Geletti, D. Civile, C. Sauli, G. Brancatelli, E. Forlin, D. Accettella, L.B. Savonuzzi, L. De Santis, A. Vesnaver. Geophysical evidence of a large occurrence of mud volcanoes associated with gas plumbing system in the Ross Sea (Antarctica). Geosci. Front., 15 (2024), Article 101727
A. Camerlenghi, M. Cita, B.D. Vedova, N. Fusi, L. Mirabile, G. Pellis. Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Marine Geophys. Res., 17 (1995), pp. 115-141
H.-C. Chao, C.-F. You, C.-H. Sun. Gases in Taiwan mud volcanoes: chemical composition, methane carbon isotopes, and gas fluxes. Applied Geochem., 25 (2010), pp. 428-436
G. Ciotoli, M. Procesi, G. Etiope, U. Fracassi, G. Ventura. Influence of tectonics on global scale distribution of geological methane emissions. Nature Commun., 11 (2020), p. 2305
C. Cromie, N. Scarselli, J. Craig, M.R. Khan, A. Hussain. Tectonostratigraphic evolution and hydrocarbon prospectivity South of Gwadar Bay, Makran accretionary wedge, offshore SW Pakistan. J. Petrol.Geol., 45 (2022), pp. 179-199
D. Cukur, G.H. Lee, J.G. Um, D.C. Kim, J.H. Kim. Northern Barbados accretionary prism: Structure, deformation, and fluid flow interpreted from 3D seismic and well‐log data. Isl. Arc, 18 (2009), pp. 642-660
L. Dal Zilio, G. Hetényi, J. Hubbard, L. Bollinger. Building the Himalaya from tectonic to earthquake scales. Nature Rev. Earth Environ., 2 (2021), pp. 251-268
G. Delisle. The mud volcanoes of Pakistan. Environ. Geol., 46 (2004), pp. 1024-1029
G. Delisle, U. Von Rad, H. Andruleit, C. Von Daniels, A. Tabrez, A. Inam. Active mud volcanoes on-and offshore eastern Makran, Pakistan. Int. J. Earth Sci., 91 (2002), pp. 93-110
J. Deng, L. Zhang, H. Liu, H. Liu, R. Liao, A.S. Mastoi, X. Yang, W. Sun. Geochemistry of subducted metabasites exhumed from the Mariana forearc: Implications for Pacific seamount subduction. Geosci. Front., 12 (2021), Article 101117
É. Deville, S.H. Guerlais, S. Lallemant, F. Schneider. Fluid dynamics and subsurface sediment mobilization processes: an overview from Southeast Caribbean. Basin Res., 22 (2010), pp. 361-379
D. Di Luccio, I.M.B. Guerra, L.E.C. Valero, D.F.M. Giraldo, S. Maggi, M. Palmisano. Physical and geochemical characteristics of land mud volcanoes along Colombia's Caribbean coast and their societal impacts. Sci. Total Environ., 759 (2021), Article 144225
A. Dielforder, H. Vollstaedt, T. Vennemann, A. Berger, M. Herwegh. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex. Nature Commun., 6 (2015), p. 7504
L.I. Dimitrov. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev., 59 (2002), pp. 49-76
B.A. Eaton. Fracture gradient prediction and its application in oilfield operations. J. Petrol.Technol., 21 (1969), pp. 1353-1360
G. Etiope, G. Ciotoli, S. Schwietzke, M. Schoell. Gridded maps of geological methane emissions and their isotopic signature. Earth Syst. Sci. Data, 11 (2019), pp. 1-22
G. Etiope, K.R. Lassey, R.W. Klusman, E. Boschi. Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett., 35 (9) (2008), pp. 3071-3075
C.M. Fedo, H.W. Nesbitt, G.M. Young. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23 (1995), pp. 921-924
M. Filonchyk, M.P. Peterson, L. Zhang, V. Hurynovich, Y. He. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ., 935, 173359 (2024)
J. Fruehn, R. White, T. Minshull. Internal deformation and compaction of the Makran accretionary wedge. Terra Nova, 9 (1997), pp. 101-104
S.S. Ganguli, S. Sen. Investigation of present-day in-situ stresses and pore pressure in the south Cambay Basin, western India: Implications for drilling, reservoir development and fault reactivation. Marine Petrol. Geol., 118 (2020), Article 104422
A. Godon, N. Jendrzejewski, M. Castrec-Rouelle, A. Dia, F. Pineau, J. Boulègue, M. Javoy. Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex. Geochim. Cosmochim. Acta, 68 (2004), pp. 2153-2165
G. Grando, K. McClay. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sediment. Geol., 196 (2007), pp. 157-179
I. Grevemeyer, A.J. Kopf, N. Fekete, N. Kaul, H.W. Villinger, M. Heesemann, K. Wallmann, V. Spieß, H.-H. Gennerich, M. Müller. Fluid flow through active mud dome Mound Culebra offshore Nicoya Peninsula, Costa Rica: evidence from heat flow surveying. Marine Geol., 207 (2004), pp. 145-157
Y.S. Hayakawa, S. Kusumoto, N. Matta. Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan). Earth Planets Space, 68 (2016), pp. 1-10
P. Henry, X. Le Pichon, S. Lallemant, S. Lance, J.B. Martin, J.P. Foucher, A. Fiala-Médioni, F. Rostek, N. Guilhaumou, V. Pranal. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J. Geophys. Res. Solid Earth, 101 (1996), pp. 20297-20323
T. Himmler, D. Birgel, G. Bayon, T. Pape, L. Ge, G. Bohrmann, J. Peckmann. Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chem. Geol., 415 (2015), pp. 102-117
J. Hunt. Petroleum Geochemistry and Geology (Textbook). (2nd Ed.,), WH Freeman Company (1995)
Hussain, A., Khan, M.R., Ahmad, N., Javed, T., 2015. Mud-diapirism induced structuration and implications for the definition and mapping of hydrocarbon traps in Makran accretionary prism, Pakistan, International Conference and Exhibition, Melbourne, Australia 13-16 September 2015. Society of Exploration Geophysicists and AAPG, pp. 458-458.
S.B. Joye, A. Boetius, B.N. Orcutt, J.P. Montoya, H.N. Schulz, M.J. Erickson, S.K. Lugo. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol., 205 (2004), pp. 219-238
A.M. Kassi, H. Bayraktar, S.D. Khan, A.K. Kasi. Recurring emergence of the mud islands on shelf of the Arabian Sea along the Makran coast of Pakistan–Historical perspective using remote sensing techniques. J. Geol. Soc. India, 90 (2017), pp. 201-208
A.M. Kassi, S.D. Khan, H. Bayraktar, A.K. Kasi. Newly discovered mud volcanoes in the Coastal Belt of Makran, Pakistan—tectonic implications. Arabian J. Geosci., 7 (2014), pp. 4899-4909
M. Khan, Y. Liu. Geodynamic evolution of the offshore Indus Basin Pakistan: the western Indian plate passive continental margin. Geophys. J. Int., 217 (2019), pp. 1366-1386
M. Khan, H.A. Raza, S. Alam. Petroleum geology of the Makran region: implications for hydrocarbon occurrence in cool basins. J. Petrol. Geol., 14 (1991), pp. 5-18
N. Khan. Comparative study of pore pressure in wells of Indus Offshore, southwest Pakistan. Arabian J. Sci. Eng., 43 (2018), pp. 349-359
U. Khan, M. Khan, S. Wu, G. Jinwei. Middle Miocene renewed subduction of arabian-eurasian plates: Implications for convergent tectonic mechanisms, tectonically-induced fluid overpressures, and sediment recycling dynamics. Marine Petrol. Geol., 162 (2024), Article 106704
S.N. Kokh, E.V. Sokol, M.A. Gustaytis, I.A. Sokol, A.S. Deviatiiarova. Onshore mud volcanoes as a geological source of mercury: Case study from the Kerch Peninsula, Caucasus continental collision zone. Sci. Total Environ., 751 (2021), Article 141806
A. Kopf, J.H. Behrmann. Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex. Geol. Soc. London Spe. Publ., 174 (2000), pp. 169-204
A.J. Kopf. Significance of mud volcanism. Rev. Geophys., 40 (2002), Article 2-1-2-52
A.J. Kopf. Global methane emission through mud volcanoes and its past and present impact on the Earth's climate. Int. J. Earth Sci., 92 (2003), pp. 806-816
C. Kopp, J. Fruehn, E. Flueh, C. Reichert, N. Kukowski, J. Bialas, D. Klaeschen. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329 (2000), pp. 171-191
A. Kumar, J.S. Ray, P. Binusarma, N. Awasthi, B.G. George, M. Yadava, R. Bhutani, S. Balakrishnan, K. Pande. Origin of breccia in mud volcanoes of the Andaman accretionary prism: Implications for forearc processes. Chem. Geol., 586 (2021), Article 120595
W. Li, J. Wang, C. Jia, S. Lu, J. Li, P. Zhang, Y. Wei, Z. Song, G. Chen, N. Zhou. Carbon isotope fractionation during methane transport through tight sedimentary rocks: Phenomena, mechanisms, characterization, and implications. Geosci. Front., 15 (2024), Article 101912
A. Lichtschlag, J. Felden, F. Wenzhöfer, F. Schubotz, T.F. Ertefai, A. Boetius, D. De Beer. Methane and sulfide fluxes in permanent anoxia: In situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea). Geochim. Cosmochim. Acta, 74 (2010), pp. 5002-5018
S. Mau, H. Sahling, G. Rehder, E. Suess, P. Linke, E. Söding. Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Marine Geol., 225 (2006), pp. 129-144
A. Mazzini, G. Etiope. Mud volcanism: An updated review. Earth-Sci. Rev., 168 (2017), pp. 81-112
A. Milkov. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geol., 167 (2000), pp. 29-42
T. Minshull, R. White, P. Barton, J. Collier. Deformation at plate boundaries around the Gulf of Oman. Marine Geol., 104 (1992), pp. 265-277
S. Muthusamy, M. Jayaprakesh, K. Sivakumar, S. Venkatramanan, M.V. Prasanna, S. Selvam, S. Chidambaram. Elemental geochemistry of surface sediments from Manakudy estuary, south-west coast of India: Inferences to sources of elements and their accumulation. Geol. J., 56 (2021), p. 2360
R. Nakada, Y. Takahashi, U. Tsunogai, G. Zheng, H. Shimizu, K.H. Hattori. A geochemical study on mud volcanoes in the Junggar Basin, China. Appl. Geochem., 26 (2011), pp. 1065-1076
T. Neurauter, H. Roberts. Three generations of mud volcanoes on the Louisiana continental slope. Geo-Marine Lett., 14 (1994), pp. 120-125
H. Nie, C. Sun, P. Li, Z. Jin, Q. Liu, H. Bao, B. Shen, W. Dang. Carbon isotope evidence for shale gas preservation conditions and large methane release over million years: A case study of shale gas reservoirs of Wufeng and Longmaxi Formations in the Sichuan Basin. Geosci. Front., 14 (2023), Article 101642
I. Novikov, Y. Vapnik, I. Safonova. Mud volcano origin of the Mottled Zone, south Levant. Geosci. Front., 4 (2013), pp. 597-619
F. Odonne, P. Imbert, M. Dupuis, A.A. Aliyev, O.R. Abbasov, E.E. Baloglanov, B.C. Vendeville, G. Gabalda, D. Remy, V. Bichaud. Mud volcano growth by radial expansion: Examples from onshore Azerbaijan. Marine Petrol. Geol., 112 (2020), Article 104051
S. Pajang, N. Cubas, J. Letouzey, L. Le Pourhiet, S. Seyedali, M. Fournier, P. Agard, M.M. Khatib, M. Heyhat, M. Mokhtari. Seismic hazard of the western Makran subduction zone: insight from mechanical modelling and inferred frictional properties. Earth Planet. Sci. Lett., 562 (2021), Article 116789
A. Parker. An index of weathering for silicate rocks. Geol. Mag., 107 (1970), pp. 501-504
S. Parvaiz, A. Ali, F. Javed, M.A. Shah. Deformational pattern and seismogenic potential of the eastern Makran subduction zone. J. Asian Earth Sci., 235 (2022), Article 105298
C. Penney, F. Tavakoli, A. Saadat, H.R. Nankali, M. Sedighi, F. Khorrami, F. Sobouti, Z. Rafi, A. Copley, J. Jackson. Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophys. J. Int., 209 (2017), pp. 1800-1830
J.R. Pettinga. Mud volcano eruption within the emergent accretionary Hikurangi margin, southern Hawke’s Bay, New Zealand. J. Geol. Geophys., 46 (2003), pp. 107-121
A. Radwan, A. Abudeif, M. Attia, M.A. Elkhawaga, W.K. Abdelghany, A.A. Kasem. Geopressure evaluation using integrated basin modelling, well-logging and reservoir data analysis in the northern part of the Badri oil field, Gulf of Suez, Egypt. J. Afr. Earth Sci., 162 (2020), Article 103743
A. Radwan, A. Abudeif, M. Attia, M. Mohammed. Pore and fracture pressure modeling using direct and indirect methods in Badri Field, Gulf of Suez, Egypt. J. Afr. Earth Sci., 156 (2019), pp. 133-143
A.E. Radwan. Modeling pore pressure and fracture pressure using integrated well logging, drilling based interpretations and reservoir data in the Giant El Morgan oil Field, Gulf of Suez, Egypt. J. Afr. Earth Sci., 178 (2021), Article 104165
A.E. Radwan. Drilling in complex pore pressure regimes: analysis of wellbore stability applying the depth of failure approach. Energies, 15 (2022), p. 7872
A.M. Ramdhan, D. Fadlan, S. O’Connor, R. Herdianto, A.E. Radwan, A. Arifin. Pore pressure-minimum horizontal stress coupling estimation in Tunu Field, Lower Kutai Basin, Indonesia. Interpretation, 12 (2024), pp. 1-48
J.S. Ray, A. Kumar, A. Sudheer, R. Deshpande, D. Rao, D. Patil, N. Awasthi, R. Bhutani, R. Bhushan, A. Dayal. Origin of gases and water in mud volcanoes of Andaman accretionary prism: implications for fluid migration in forearcs. Chem. Geol., 347 (2013), pp. 102-113
H. Raza, S. Alam, S. Ali, N. Elahi, M. Anwar. Hydrocarbon potential of Makran region of Baluchistan basin. Seminar on mineral policy of Baluchistan, Geo-logical Survey of Pakistan, Quetta (1981)
Roaldset, E., 1972. Mineralogy and geochemistry of Quaternary clays in the Numedal area, southern Norway.
M. Römer, H. Sahling, T. Pape, G. Bohrmann, V. Spieß. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J. Geophys. Res. Oceans, 117 (C10) (2012), p. 10015
I. Safonova, I. Savinskiy, A. Perfilova, O. Obut, A. Gurova, S. Krivonogov. A new tectonic model for the Itmurundy Zone, central Kazakhstan: linking ocean plate stratigraphy, timing of accretion and subduction polarity. Geosci. Front., 15 (2024), Article 101814
M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J.G. Canadell, E.J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling. Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmosph. Chem. Phys., 17 (2017), pp. 11135-11161
M. Saunois, R. Jackson, P. Bousquet, B. Poulter, J. Canadell. The growing role of methane in anthropogenic climate change. Environ. Res. Lett., 11 (2016), Article 120207
E.J. Sauter, S.I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, M. Klages. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet. Sci. Lett., 243 (2006), pp. 354-365
H. Schlüter, A. Prexl, C. Gaedicke, H. Roeser, C. Reichert, H. Meyer, C. Von Daniels. The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes. Marine Geol., 185 (2002), pp. 219-232
S. Sen, A. Kundan, M. Kumar. Modeling pore pressure, fracture pressure and collapse pressure gradients in offshore panna, western India: implications for drilling and wellbore stability. Nat. Resourc. Res., 29 (2020), pp. 2717-2734
G. Smith, L. McNeill, T.J. Henstock, J. Bull. The structure and fault activity of the Makran accretionary prism. J. Geophys. Res. Solid Earth, 117 (B7) (2012), pp. 1-17
V. Sondhi. The Makran earthquake, 28th November 1945, the birth of new islands. Indian minerals, 1 (1947), pp. 146-154
S.A. Stewart, R.J. Davies. Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bull., 90 (2006), pp. 771-786
M. Strasser, G.F. Moore, G. Kimura, Y. Kitamura, A.J. Kopf, S. Lallemant, J.-O. Park, E.J. Screaton, X. Su, M.B. Underwood. Origin and evolution of a splay fault in the Nankai accretionary wedge. Nature Geosci., 2 (2009), pp. 648-652
M. Subramanian, J. Muthumanickam, S. Karthikeyan, V. Senapathi, P. Mohan Viswanathan, S. Sekar, C. Sabarathinam. Elemental geochemistry of surface sediments from Manakudy estuary, south‐west coast of India: Inferences to sources of elements and their accumulation. Geol. J., 56 (2021), pp. 2360-2378
N. Suzuki, K. Koike, J. Kameda, G. Kimura. Thermogenic methane and hydrogen generation in subducted sediments of the Nankai Trough. Commun. Earth Environ., 5 (2024), p. 97
G. Tamburello, S. Pondrelli, G. Chiodini, D. Rouwet. Global-scale control of extensional tectonics on CO2 earth degassing. Nature commun., 9 (2018), p. 4608
F. Tassi, M. Bonini, G. Montegrossi, F. Capecchiacci, B. Capaccioni, O. Vaselli. Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions. Chem. Geol., 294 (2012), pp. 113-126
B.P. Tissot, D.H. Welte. Petroleum formation and occurrence. Springer Science & Business Media (2013)
T. Tunçay, O. Dengiz, I. Bayramin, S. Kilic, O. Baskan. Chemical weathering indices applied to soils developed on old lake sediments in a semi-arid region of Turkey. Eurasian J. Soil Sci., 8 (2019), pp. 60-72
U. Von Rad, U. Berner, G. Delisle, H. Doose-Rolinski, N. Fechner, P. Linke, A. Lückge, H. Roeser, R. Schmaljohann, M. Wiedicke. Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo-Mar. Lett., 20 (2000), pp. 10-19
S.J. Watson, J.J. Mountjoy, P.M. Barnes, G.J. Crutchley, G. Lamarche, B. Higgs, J. Hillman, A.R. Orpin, A. Micallef, H. Neil. Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand. Geology, 48 (2020), pp. 56-61
J. Wei, T. Wu, X. Deng, S.W. Haider, S. Kahkashan, S. Yang. Seafloor methane emission on the Makran continental margin. Sci. Total Environ., 801 (2021), Article 149772
M. Wiedicke, S. Neben, V. Spiess. Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Marine Geol.1, 172 (2001), pp. 57-73
T. Wu, X. Deng, H. Yao, B. Liu, J. Ma, S.W. Haider, Z. Yu, L. Wang, M. Yu, J. Lu. Distribution and development of submarine mud volcanoes on the Makran Continental Margin, offshore Pakistan. J. Asian Earth Sci., 207 (2021), Article 104653
C.-F. You, J.M. Gieskes, T. Lee, T.-F. Yui, H.-W. Chen. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl. Geochem., 19 (2004), pp. 695-707
H. Zeng, M. Ma, Y. Li, J. Zhang, H. Guan, X. Li. The effect of antigorite dehydration on velocity structure and water migration in subduction zones. Geosci. Front., 15 (2024), Article 101923
S. Zhang, J. Ma, X. Zhang, C. Guo. Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities. Sci. Total Environ., 893 (2023), Article 164701
Q. Zhou, S. Wang, J. Liu, X. Hu, Y. Liu, Y. He, X. He, X. Wu. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems. Geosci. Front., 13 (2022), Article 101427

Accesses

Citations

Detail

Sections
Recommended

/