Detrital zircons from Cambrian rocks of western Laurentia define two episodes of Rodinian rift-related magmatism

Lauren I. Madronich , William A. Matthews , Thomas Hadlari , Chad Morgan , Charles M. Henderson

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102007

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) :102007 DOI: 10.1016/j.gsf.2025.102007

Detrital zircons from Cambrian rocks of western Laurentia define two episodes of Rodinian rift-related magmatism

Author information +
History +
PDF

Abstract

Many aspects of the disassembly of Neoproterozoic supercontinent Rodinia remain poorly constrained. Current models for the breakup along western Laurentia (present coordinates) do not fully reconcile stratigraphic observations regarding the timing and mechanisms of continental rifting. Latest Neoproterozoic to Cambrian stratigraphic units exposed along the North American Cordillera from southwestern Canada to the southwestern United States contain Neoproterozoic and Cambrian zircons interpreted to be sourced from rift-related igneous rocks generated during the fragmentation of Rodinia. Two discrete magmatic episodes distinguished by a ca. 50 Myr period of apparent magmatic quiescence are identified using the detrital record: (1) Tonian and Cryogenian to earliest Ediacaran magmatism (mantle plume events followed by rifting); and (2) latest Ediacaran to late Cambrian magmatism. The detrital zircon record of the first episode supports a 660–650 Ma rift-to-drift transition followed by passive margin sedimentation of the upper Windermere Supergroup. After a period of apparent magmatic quiescence from 630–580 Ma, detrital zircon dates of 580–520 Ma from central-western Laurentia provide evidence for renewed rift magmatism preceding the initiation of the lower Paleozoic passive margin. These new U-Pb dates are used to present a refined model of Rodinia disassembly with improved timing constraints suggesting that its final breakup and the Sauk I transgression occurred ca. 520 Ma, in accordance with recent revisions to the timing of the Sauk transgressions in southwestern Laurentia.

Keywords

Rodinia break-up / Rift magmatism / Tectonostratigraphy / Detrital zircon geochronology / Sauk transgression

Cite this article

Download citation ▾
Lauren I. Madronich, William A. Matthews, Thomas Hadlari, Chad Morgan, Charles M. Henderson. Detrital zircons from Cambrian rocks of western Laurentia define two episodes of Rodinian rift-related magmatism. Geoscience Frontiers, 2025, 16(2): 102007 DOI:10.1016/j.gsf.2025.102007

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Lauren I. Madronich: Writing – original draft, Conceptualization, Methodology, Data aquisition and interpretation. William A. Matthews: Writing – review & editing, Supervision, Methodology, Data curation, Conceptualization. Thomas Hadlari: Writing – review & editing, Validation, Conceptualization. Chad Morgan: Writing – review, Validation. Charles M. Henderson: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Measurements were conducted at the Calgary Geo- and Thermochronology Research Group and Laboratory (formerly the Centre for Pure and Applied Tectonics and Thermochronology) at the University of Calgary, a LA-ICP-MS thermochronology and geochronology laboratory funded by the Canadian Foundation for Innovation (CFI project 30696). Samples of the Tapeats Sandstone from the Grand Canyon were collected under Scientific Collection Permit #GRCA-2017-SCI-0024 under Study #GRCA-00578 issued to Dr. Karl Karlstrom. Thank you to Drs. Karlstrom and Crossey for the opportunity to participate in a research trip of a lifetime with the University of New Mexico. We appreciate reviews of an early draft of this work from Drs. Margot MeMechan and Dave Pattison. We thank Drs. James Hagadorn, Jim Crowley, Terry Poulton, Phil Simony, Kevin Root, Bill Arnott, and Brian Pratt for enthusiastic and thoughtful discussions about the Neoproterozoic and Cambrian tectonostratigraphy of the North American Cordillera. Constructive comments from Dr. Theresa Schwartz and 3 anonymous reviewers improved the quality and clarity of this paper, for which we thank them.

References

[1]

J.D. Aitken. The Ice Brook Formation and post-Rapitan, late Proterozoic glaciation, Mackenzie Mountains, Northwest Territories. Geological Survey of Canada Bulletin, 404 (1991), p. 43,

[2]

J.M. Amato, G.H. Mack. Detrital zircon geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico: Evidence for contrasting Grenville-age and Cambrian sources on opposite sides of the Transcontinental Arch. Geol. Soc. Am. Bull., 124 (2012), pp. 1826-1840,

[3]

J.L. Anderson, E.E. Bender. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos, 23 (1989), pp. 19-52,

[4]

E.S. Anttila, F.A. Macdonald, J. Zinto, M.D. Britt. The Real McCoy: Great Unconformity source-to-sink on the rifted passive margin of Laurentia. Earth Planet. Sci. Lett., 642 (2024), p. 118852

[5]

L.E. Babcock, L.E. Babcock, S.C. Peng, C.E. Brett, M.Y. Zhu, P. Ahlberg, M. Bevis, R.A. Robison. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld, 24 (2015), pp. 5-15

[6]

E.A. Balgord, W.A. Yonkee, P.K. Link, C.M. Fanning. Stratigraphic, geochronologic, and geochemical record of the Cryogenian Perry Canyon Formation, northern Utah: Implications for Rodinia rifting and Snowball earth glaciation. Geol. Soc. Am. Bull., 125 (2013), pp. 1442-1467,

[7]

A.J. Barrón-Díaz, F.A. Paz-Moreno, J.W. Hagadorn. The Cerro Rajón Formation—a new lithostratigraphic unit proposed for a Cambrian (Terreneuvian) volcano-sedimentary succession from the Caborca region, northwest Mexico. J. S. Am. Earth. Sci., 89 (2019), pp. 197-210

[8]

F. Bea, P. Montero, M. Ortega. A LA–ICP–MS evaluation of Zr reservoirs in common crustal rocks: implications for Zr and Hf geochemistry, and zircon-forming processes. Can. Mineral., 44 (3) (2006), pp. 693-714

[9]

E.A. Belousova, W.L. Griffin, S.Y. O’Reilly, N.I. Fisher. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143 (2002), pp. 602-622,

[10]

L.P. Beranek. A magma-poor rift model for the Cordilleran margin of western North America. Geology, 45 (2017), pp. 1115-1118,

[11]

G.C. Bond, N. Christie-Blick, M.A. Kominz, W.J. Devlin. An early Cambrian rift to post-rift transition in the Cordillera of western North America. Nature, 315 (1985), pp. 742-746,

[12]

G.C. Bond, M.A. Kominz. Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian Rocky Mountains: implications for subsidence mechanisms, age of breakup, and crustal thinning (Canada). Geol. Soc. Am. Bull., 95 (1984), pp. 155-173,

[13]

F.T. Bowyer, R.A. Wood, M. Yilales. Sea level controls on Ediacaran-Cambrian animal radiations. Science Advances, 10 (31) (2024), Article eado6462

[14]

K. Buchan, R. Ernst. Diabase Dyke Swarms of Nunavut, Northwest Territories and Yukon, Canada. Geological Survey of Canada Open-File, 7464 (2013), p. 24 p,

[15]

Campbell, R.W., Beranek, L.P., Piercey, S.J., Friedman, R., 2019. Early Paleozoic post-breakup magmatism along the Cordilleran margin of western North America: New zircon U-Pb age and whole-rock Nd- and Hf-isotope and lithogeochemical results from the Kechika group, Yukon, Canada. Geosphere 15, 1–29. https://doi.org/10.1130 /GES02044.1.

[16]

D.E. Canfield, S.W. Poulton, G.M. Narbonne. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315 (2007), pp. 92-96

[17]

M.P. Carlson. Transcontinental Arch—A pattern formed by rejuvenation of local features across central North America. Tectonophysics, 305 (1999), pp. 225-233,

[18]

M.P. Cecile, D.W. Morrow, G.K. Williams. Early Paleozoic (Cambrian to Early Devonian) tectonic framework, Canadian Cordillera. Bull. Can. Pet. Geol., 45 (1997), pp. 54-74

[19]

A.D. Chapman, W.G. Ernst, E. Gottlieb, V. Powerman, E.P. Metzger. Detrital zircon geochronology of Neoproterozoic-Lower Cambrian passive-margin strata of the White-Inyo Range, east-central California: Implications for the Mojave-Snow Lake fault hypothesis. Geol. Soc. Am. Bull., 127 (2015), pp. 926-944,

[20]

N. Christie-Blick. Upper Proterozoic and Early Cambrian rocks of the Sheeprock Mountains, Utah: regional correlation and significance. Geol. Soc. Am. Bull., 93 (1982), pp. 735-750

[21]

M. Colpron, J.M. Logan, J.K. Mortensen. U-Pb zircon age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Can. J. Earth Sci., 39 (2002), pp. 133-143,

[22]

F.A. Corsetti, J.W. Hagadorn. The Precambrian-Cambrian transition: Death Valley. United States. Geology, 28 (4) (2000), pp. 299-302

[23]

D.S. Coutts, W.A. Matthews, S.M. Hubbard. Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geosci. Front., 10 (4) (2019), pp. 1421-1435

[24]

M.D. Crittenden, N. Christie-Blick, P.K. Link. Evidence for two pulses of glaciation during the late Proterozoic in northern Utah and southeastern Idaho. Geol. Soc. Am. Bull., 94 (4) (1983), pp. 437-450,

[25]

R.W. Dalrymple, G.M. Narbonne. Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic Windermere Supergroup), Mackenzie Mountains, N.W.T. Can. J. Earth Sci., 33 (1996), pp. 848-862,

[26]

C. Dehler, G. Gehrels, S. Porter, M. Heizler, K. Karlstrom, G. Cox, L. Crossey, M. Timmons. Synthesis of the 780-740 Ma Chuar, Uinta Mountain, and Pahrump (ChUMP) groups, western USA: Implications for Laurentia-wide cratonic marine basins. Geol. Soc. Am. Bull., 129 (2017), pp. 607-624,

[27]

P.R. Desjardins, B.R. Pratt, L.A. Buatois, M. Gabriela Mángano. Stratigraphy and sedimentary environments of the Lower Cambrian Gog Group in the southern Rocky Mountains of Western Canada: Transgressive sandstones on a broad continental margin. Bull. Can. Pet. Geol., 58 (2010), pp. 403-439,

[28]

W.J. Devlin, G.C. Bond. The initiation of the early Paleozoic Cordilleran miogeocline: Evidence from the uppermost Proterozoic-Lower Cambrian Hamill Group of southeastern British Columbia. Can. J. Earth Sci., 19 (1988), pp. 1-19,

[29]

W.R. Dickinson, G.E. Gehrels. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett., 288 (2009), pp. 115-125

[30]

W.R. Dickinson, T.F. Lawton, G.E. Gehrels. Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona. Geology, 37 (2009), pp. 503-506,

[31]

J. Ding, S. Zhang, D.A. Evans, T. Yang, H. Li, H. Wu, J. Chen. North China craton: The conjugate margin for northwestern Laurentia in Rodinia. Geology, 49 (7) (2021), pp. 773-778,

[32]

G.H. Eisbacher. Late Proterozoic rifting, glacial sedimentation, and sedimentary cycles in the light of Windermere deposition, Western Canada. Palaeogeog. Palaeoclimatol. Palaeoecol., 51 (1985), pp. 231-254,

[33]

K.V. Evans, R.E. Clemons. Cambrian-Ordovician (500 Ma) alkalic plutonism in southwestern New Mexico: U-Th-Pb isotopic data from the Florida Mountains. Am. J. Sci., 288 (1988), pp. 735-755,

[34]

C.A. Evenchick, R.R. Parrish, H. Gabrielse. Precambrian gneiss and late Proterozoic sedimentation in north-central British Columbia. Geology, 12 (1984), pp. 233-237,

[35]

A. Eyster, F. Ferri, M.D. Schmitz, F.A. Macdonald. One Diamictite and two rifts: Stratigraphy and geochronology of the Gataga Mountain of Northern British Columbia. Am. J. Sci., 318 (2018), pp. 167-207

[36]

C.M. Fanning, P.K. Link. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology, 32 (10) (2004), pp. 881-884,

[37]

C.M. Fedo, J.D. Cooper. Braided fluvial to marine transition: the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert. California. J. Sediment. Petrol., 60 (1990), pp. 220-234

[38]

C.M. Fedo, J.D. Cooper. Sedimentology and sequence stratigraphy of Neoptoterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin. Sediment. Geol., 141–142 (2001), pp. 501-522,

[39]

Foster. Cambrian Ocean World: Ancient Sea Life of North America. Indiana University Press (2014), pp. 1-416

[40]

R.M. Gaschnig, J.D. Vervoort, R.S. Lewis, B. Tikoff. Probing the Proterozoic and Archean crust in the northern U.S. Cordillera with inherited zircon from the Idaho batholith. Geol. Soc. Am. Bull., 125 (2013), pp. 73-88,

[41]

G.E. Gehrels, M. Pecha. Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere, 10 (2014), pp. 49-65,

[42]

T. Hadlari, N.M. Rayner, T.P. Poulton, R.W.C. Arnott. Syn-rift volcanism (ca. 670 Ma) in the lower Windermere Supergroup, southern Canadian Cordillera: New constraints on the syn- to post-rift transition for northwestern Laurentia. Precambrian Res., 414 (2024), p. 107604

[43]

T. Hadlari, G.T. Swindles, J.M. Galloway, K.M. Bell, C. Sulphur, L.M. Heaman, L.P. Beranek, K.M. Fallas. 1.8 billion years of detrital zircon recycling calibrates a refractory part of Earth’s sedimentary cycle. PLoS ONE, 10 (2015), pp. 1-10,

[44]

T. Hadlari, R.W.C. Arnott, W.A. Matthews, T.P. Poulton, K. Root, L.I. Madronich. Provenance of the incipient passive margin of NW Laurentia (Neoproterozoic): Detrital zircon from continental slope and basin floor deposits of the Windermere Supergroup, Southern Canadian Cordillera. Lithosphere, 2021 (1) (2021), Article 8356327,

[45]

R.E. Hanson, R.E. Puckett Jr., G.R. Keller, M.E. Brueseke, C.L. Bulen, S.A. Mertzman, S.A. Finegan, D.A. McCleery. Intraplate magmatism related to opening of the southern Iapetus Ocean: Cambrian Wichita igneous province in the Southern Oklahoma rift zone. Lithos, 174 (2013), pp. 57-70

[46]

S.S. Harlan, L. Heaman, A.N. LeCheminant, W.R. Premo. Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions. Geology, 31 (2003), pp. 1053-1056,

[47]

N. Hayward. Geophysical investigation and reconstruction of lithospheric structure and its control on geology, structure, and mineralization in the Cordillera of northern Canada and eastern Alaska. Tectonics, 34 (2015), pp. 2165-2189,

[48]

L.M. Heaman, A.N. LeCheminant, R.H. Rainbird. Nature and timing of Franklin igneous events Canada: implications for a late Proterozoic mantle plume and the break-up of Laurentia. Earth Planet. Sci. Lett., 109 (1992), pp. 117-131

[49]

Hintze, L.F., Davis, F.D., 2003. Geology of Millard County, Utah. Utah Geological Survey Bulletin 133, 305 p.

[50]

E.B. Hodgin, L.L. Nelson, C.J. Wall, A.J. Barrón-Díaz, L.C. Webb, M.D. Schmitz, D.A. Fike, J.W. Hagadorn, E.F. Smith. A link between rift-related volcanism and end-Ediacaran extinction? Integrated chemostratigraphy, biostratigraphy, and U-Pb geochronology from Sonora, Mexico. Geology, 49 (2020), pp. 115-119,

[51]

Hoffman, P.F., Tirrul, R., King, J.E., St-Onge., M.R., Lucas, S.B., 1988. Axial projections and modes of crustal thickening, eastern Wopmay orogen, northwest Canadian shield. In: Clark, S.P., Jr. (Ed.), Processes in Continental Lithospheric Deformation. Geological Society of America Special Paper 218, pp. 1–29.

[52]

P.F. Hoffman, D.P. Schrag. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14 (2002), pp. 129-155

[53]

M.E. Holland, M. Mohr, M. Schmitz, L. Madronich, K. Karlstrom. Source-to-sink tandem geochronology reveals tectonic influences on the Cambrian Transcontinental Arch of Laurentia. Terra Nova, 36 (2) (2023), pp. 161-169,

[54]

K. Horie, H. Hidaka, F. Gauthier-Lafaye. Elemental distribution in zircon: Alteration and radiation- damage effects. Phys. Chem. Earth. Parts a/b/c, 31 (10–14) (2006), pp. 587-592,

[55]

M.S. Horstwood, J. Košler, G. Gehrels, S.E. Jackson, N.M. McLean, C. Paton, N.J. Pearson, K. Sircombe, P. Sylvester, P. Vermeesch, J.F. Bowring. Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology – uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res., 40 (2016), pp. 311-332,

[56]

P.W.O. Hoskin. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques. J. Trace Microprobe Tech., 16 (1998), pp. 301-326

[57]

A.L. Howard, G.L. Farmer, J.M. Amato, C.M. Fedo. Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia. Earth Planet. Sci. Lett., 432 (2015), pp. 300-310,

[58]

B.L. Howard, G.R. Sharman, J.L. Crowley, E.R. Wersan. The leaky chronometer: Evidence for systematic cryptic Pb loss in laser ablation U-Pb dating of zircon relative to CA-TIMS. Terra Nova, 37 (1) (2024), pp. 19-25,

[59]

International Commission on Stratigraphy, 2023. International Chronostratigraphic Chart v.2023/09. https://stratigraphy.org/ICSchart/ChronostratChart2023-09.pdf.

[60]

K.E. Karlstrom, S.A. Bowring, C.M. Dehler, A.H. Knoll, S.M. Porter, D.J. Des Marais, A.B. Weil, Z.D. Sharp, J.W. Geissman, M.B. Elrick, J.M. Timmons, L.J. Crossey, K.L. Davidek. Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology, 28 (2000), pp. 619-622,

[61]

K. Karlstrom, J. Hagadorn, G. Gehrels, W. Matthews, M. Schmitz, L. Madronich, J. Mulder, M. Pecha, D. Giesler, L. Crossey. Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons. Nat. Geosci., 11 (2018), pp. 438-443,

[62]

K. Karlstrom, M.T. Mohr, M.D. Schmitz, F.A. Sundberg, S.M. Rowland, R. Blakey, J.R. Foster, L.J. Crossey, C.M. Dehler, J.W. Hagadorn. Redefining the Tonto Group of Grand Canyon and recalibrating the Cambrian time scale. Geology, 48 (5) (2020), pp. 425-430,

[63]

J.A. Keeley, P.K. Link, C.M. Fanning, M.D. Schmitz. Pre- to syn-glacial rift-related volcanism in the Neoproterozoic (Cryogenian) Pocatello Formation, SE Idaho: New SHRIMP and CA-ID-TIMS constraints. Lithosphere, 5 (2013), pp. 128-150,

[64]

Keller, M., Lehnert, O., Cooper, J.D., 2012. Sauk Megasequence Supersequences, Southern Great Basin: Second-order Accommodation Events on the Southwestern Cordilleran Margin Platform. AAPG Memoir 98 Great American Carbonate Bank, pp. 873–896. doi:10.1306/13331519M983514.

[65]

H.E. Kellogg. Paleozoic stratigraphy of the southern Egan Range. Nevada. Geol. Soc. Am. Bull., 74 (1963), pp. 685-708,

[66]

T.E. Kubli, P.S. Simony. The Dogtooth High, northern Purcell Mountains, British Columbia. Bull. Can. Pet. Geol., 40 (1992), pp. 36-51

[67]

E.E. Larson, P.E. Patterson, C. Curtis, R. Drake, F.E. Mutschler. Petrologic, paleomagnetic, and structural evidence of a Paleozoic rift system in Oklahoma, New Mexico, Colorado, and Utah. Geol. Soc. Am. Bull., 96 (1985), pp. 1364-1372,

[68]

M. Levy, N. Christie-Blick. Tectonic subsidence of the Early Paleozoic passive continental margin. Geol. Soc. Am. Bull., 103 (1991), pp. 1590-1606,

[69]

Z. Li, D.A.D. Evans, G.P. Halverson. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment. Geol., 294 (2013), pp. 219-232,

[70]

Z.X. Li, S.V. Bogdanova, A.S. Collins, A. Davidson, B. De Waele, R.E. Ernst, I.C.W. Fitzsimons, R.A. Fuck, D.P. Gladkochub, J. Jacobs, K.E. Karlstrom, S. Lu, L.M. Natapov, V. Pease, S.A. Pisarevsky, K. Thrane, V. Vernikovsky. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res., 160 (2008), pp. 179-210,

[71]

W.H. Lickorish, P.S. Simony. Evidence for late rifting of the Cordilleran margin outlined by stratigraphic division of the Lower Cambrian Gog Group, Rocky Mountain Main Ranges, British Columbia and Alberta. Can. J. Earth Sci., 32 (1995), pp. 860-874

[72]

G.M. Linde, J.H. Trexler, P.H. Cashman, G. Gehrels, W.R. Dickinson. Three-dimensional evolution of the Early Paleozoic Western Laurentian Margin: New insights from detrital zircon U-Pb geochronology and Hf isotope geochemistry of the Harmony Formation of Nevada. Tectonics, 36 (2017), pp. 2347-2369,

[73]

K. Lund. Geometry of the Neoproterozoic and Paleozoic rift margin of western Laurentia: Implications for mineral deposit settings. Geosphere, 4 (2008), pp. 429-444,

[74]

K. Lund, J.N. Aleinikoff, K.V. Evans, C.M. Fanning. SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for regional synchroneity of Sturtian glaciation and associated rifting. Geol. Soc. Am. Bull., 115 (2003), pp. 349-372,

[75]

K. Lund, J.N. Aleinikoff, K.V. Evans, E.A. duBray, E.H. Dewitt, D.M. Unruh. SHRIMP U-Pb dating of recurrent Cryogenian and Late Cambrian-Early Ordovician alkalic magmatism in central Idaho: Implications for Rodinian rift tectonics. Geol. Soc. Am. Bull., 122 (2010), pp. 430-453,

[76]

Macdonald, F.A., Yonkee, W.A., Flowers, R.M., Swanson-Hysell, N.L., 2023. Neoproterozoic of Laurentia. In: Whitmeyer, S.J., Williams, M.L., Kellett, D.A., Tikoff, B. (Eds.), Laurentia: Turning Points in the Evolution of a Continent. Geol. Soc. Am. Mem. 220, 331–380. Doi:

[77]

F.A. Macdonald, M.D. Schmitz, J.L. Crowley, C.F. Roots, D.S. Jones, A.C. Maloof, J.V. Strauss, P.A. Cohen, D.T. Johnston, D.P. Schrag. Calibrating the Cryogenian. Science, 327 (2010), pp. 1241-1243

[78]

F.A. Macdonald, A.R. Prave, R. Petterson, E.F. Smith, S.B. Pruss, K. Oates, F. Waechter, D. Trotzuk, A.E. Fallick. The Laurentian record of Neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Valley. California. Geol. Soc. Am. Bull., 125 (2013), pp. 1203-1223,

[79]

A. Mackinder, B.L. Cousen, R.E. Ernst, K.R. Chamberlain. Geochemical, isotopic and U-Pb-zircon study of the central and southern portions of the 780 Ma Gunbarrel Large Igneous Province in western Laurentia. Can. J. Earth Sci., 56 (7) (2019), pp. 738-755

[80]

W. Matthews, B. Guest. A practical approach for collecting large-n detrital zircon U-Pb data sets by quadrupole LA-ICP-MS. Geostand. Geoanal. Res., 41 (2017), pp. 161-180,

[81]

W. Matthews, B. Guest, L. Madronich. Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia. Geosphere, 14 (2018), pp. 243-264,

[82]

J.M. Mattinson. U-Pb ages of zircons: a basic examination of error propagation. Chem. Geol., 66 (1987), pp. 151-162

[83]

C.A. McCormick, H. Corlett, N.M.W. Roberts, P.A. Johnston, C.J. Collom, J. Stacey, A. Koeshidayatullah, C. Hollis. U-Pb geochronology reveals that hydrothermal dolomitization was coeval to the deposition of the Burgess Shale lagerstätte. Commun. Earth. Environ., 5 (2024), p. 318,

[84]

M.R. McDonough, R.R. Parrish. Proterozoic gneisses of the Malton Complex, near Valemount, British Columbia: U-Pb ages and Nd isotopic signatures. Can. J. Earth Sci., 28 (1991), pp. 1202-1216

[85]

M. McMechan. The Neoproterozoic succession of the central Rocky Mountains. Canada. Bull. Can. Pet. Geol., 63 (3) (2015), pp. 243-273

[86]

J.G. Meert, T.H. Torsvik. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375 (2003), pp. 261-288,

[87]

S.R. Meyers, S.E. Peters. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth Planet. Sci. Lett., 303 (3–4) (2011), pp. 174-180

[88]

J.S. Miller, J.E. Matzel, C.F. Miller, S.D. Burgess, R.B. Miller. Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res., 167 (1–4) (2007), pp. 282-299,

[89]

J.E. Milton, K.A. Hickey, S.A. Gleeson, R.M. Friedman. New U-Pb constraints on the age of the Little Dal Basalts and Gunbarrel-related volcanism in Rodinia. Precambrian Res., 296 (2017), pp. 168-180,

[90]

H.T. Morris, T.S. Lovering. Stratigraphy of the East Tintic Mountains, Utah. Geological Survey Professional Paper, 361 (1961), p. 145 p

[91]

D.P. Moynihan, J.V. Strauss, L.L. Nelson, C.D. Padget. Upper Windermere Supergroup and the transition from rifting to continent-margin sedimentation, Nadaleen River area, northern Canadian Cordillera. Geol. Soc. Am. Bull., 131 (9–10) (2019), pp. 1673-1701

[92]

P.M. Myrow, J.F. Taylor, J.F. Miller, R.L. Ethington, R.L. Ripperdan, J. Allen. Fallen arches: Dispelling myths concerning Cambrian and Ordovician paleogeography of the Rocky Mountain region. Geol. Soc. Am. Bull., 115 (2003), pp. 695-713,

[93]

Nelson, L.L., Crowley, J.L., Smith, E.F., D.M., Schwartz, D.M., Hodgin, E.B., Schmitz, M.D., 2023. Cambrian explosion condensed: High-precision geochronology of the lower Wood Canyon Formation, Nevada. PNAS 20 (30), e2301478120. Doi:

[94]

L.L. Nelson, E.F. Smith, E.B. Hodgin, J.L. Browley, M.D. Schmitz, F.A. Macdonald. Geochronological constraints on Neoproterozoic rifting and onset of the Marinoan glaciation from the Kingston Peak Formation in Death Valley, California, USA. Geology, 48 (2020), pp. 1083-1087,

[95]

J.C. Olson, R.F. Marvin, R.L. Parker, H.H. Mehnert. Age and tectonic setting of lower Paleozoic alkali and mafic rocks, carbonatites, and thorium veins in south central Colorado. U.S. Geol. Survey J. Res., 5 (1977), pp. 673-687

[96]

Palmer, A.R., 1981. Subdivision of the Sauk sequence. In Taylor, M.E. (Ed.), Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report 81-743, 160–162.

[97]

J.K. Park, C.W. Jefferson. Magnetic and tectonic history of the late Proterozoic upper Little Dal and Coates Lake Groups of northwestern Canada. Precambrian Res., 52 (1–2) (1991), pp. 1-35

[98]

C. Paton, J.D. Woodhead, J.C. Hellstrom, J.M. Hergt, A. Greig, R. Maas. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst., 11 (2010), Article Q0AA06,

[99]

J.A. Petrus, B.S. Kamber. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res., 36 (2012), pp. 247-270,

[100]

Pisarevsky, S.A., Murphy, J.B., Cawood, P.A., Collins, A.S., 2008. Late Neoproterozoic and Early Cambrian palaeogeography: models and problems. In: Pankhurst, R. J., Trouw, R.A. J., Brito Neves, B.B., de Wit, M. J. (Eds.), West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geol. Soc. London Spec. Pub. 294, 9–31. doi:

[101]

C.M. Powell, Z. Li, M.W. McElhinny, J.G. Meert, J.K. Park. Palaeomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 21 (1993), pp. 889-892

[102]

A.R. Prave. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology, 27 (1999), pp. 339-342,

[103]

J.P. Pu, F.A. Macdonald, M.D. Schmitz, R.H. Rainbird, W. Bleeker, B.A. Peak, R.M. Flowers, P.F. Hoffman, M. Rioux, M.A. Hamilton. Emplacement of the Franklin large igneous province and initiation of the Sturtian Snowball Earth. Sci. Adv., 8 (47) (2022), Article eadc9430,

[104]

J.E. Reesor. Geology of the Lardeau map-area, east half, British Columbia. Geological Survey of Canada. Memoir, 369 (1973), p. 129 p

[105]

Resser, C.E., 1945. Cambrian fossils of the Grand Canyon. In: McKee, E.D., Resser, C.E. (Eds.), Cambrian History of the Grand Canyon Region. Carnegie Institution of Washington Publication 563, 171–220.

[106]

K.G. Root. Reinterpretation of the age of a succession of Paleozoic strata, Delphine Creek, southeastern British Columbia. Geological Survey of Canada Paper, 85–1A (1985), pp. 727-730

[107]

K.G. Root. Devonian Antler fold and thrust belt and foreland basin development in the southern Canadian Cordillera: implications for the Western Canada Sedimentary Basin. Bull. Can. Pet. Geol., 49 (2001), pp. 7-36

[108]

G.M. Ross. Tectonic setting of the Windermere Supergroup revisited. Geology, 19 (1991), pp. 1125-1128

[109]

Ross, G.M., Arnott, R.W.C., 2007. Regional Geology of the Windermere Supergroup, Southern Canadian Cordillera and Stratigraphic Setting of the Castle Creek Study Area, Canada. In: Nilsen, T.H., Shew, R.D., Steffens, G.S., Studlick, J.R.J. (Eds.), Atlas of Deep-water Outcrops. AAPG Studies in Geology, vol. 56. CD-ROM, 16.

[110]

G.M. Ross, J.D. Bloch, H.R. Krouse. Neoproterozoic strata of the southern Canadian Cordillera and the isotopic evolution of seawater sulfate. Precambrian Res., 73 (1995), pp. 71-99

[111]

T.M. Schwartz, K.D. Surpless, J.P. Colgan, S.A. Johnstone, C.S. Holm-Denoma. Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28–48°N). Earth-Sci. Rev., 220 (2021), Article 103734,

[112]

J.W. Sears, G.M.S. George, J.C. Winne. Continental rift systems and anorogenic magmatism. Lithos, 80 (1–4) (2005), pp. 147-154

[113]

L.L. Sloss. Sequences in the cratonic interior of North America. Geol. Soc. Am. Bull., 74 (1963), pp. 93-114,

[114]

L.L. Sloss. Forty years of sequence stratigraphy. Geol. Soc. Am. Bull., 100 (1988), pp. 1661-1665

[115]

M.P. Smith, D.A.T. Harper. Causes of the Cambrian explosion. Science, 341 (2013), pp. 1355-1356,

[116]

T.M. Smith, J.E. Saylor, T.J. Lapen, K. Hatfield, K.E. Sundell. Identifying sources of non-unique detrital age distributions through integrated provenance analysis: An example from the Paleozoic Central Colorado Trough. Geosphere, 19 (2) (2023), pp. 471-492,

[117]

C.J. Spencer, A.R. Prave, P.A. Cawood, N.M.W. Roberts. Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk sequence in west Texas. USA. Geol. Soc. Am. Bull., 126 (2014), pp. 1117-1128

[118]

C.J. Spencer, C.L. Kirkland, R.J.M. Taylor. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front., 7 (2016), pp. 581-589,

[119]

J.H. Stewart. Upper Precambrian and Lower Cambrian strata in the southern Great Basin, California and Nevada. US Geol. Survey Profess. Paper, 620 (1970), p. 206 p

[120]

J.H. Stewart. Initial deposits in the Cordilleran geosyncline: Evidence for Late Precambrian (<850 m.y.) continental separation. Geol. Soc. Am. Bull., 83 (1972), pp. 1345-1360

[121]

Stewart, J.H., McMenamin, M.A.S., Morales-Ramirez, J.M., 1984. Upper Proterozoic and Cambrian rocks in the Caborca Region, Sonora, Mexico—Physical stratigraphy, biostratigraphy, paleocurrent studies and regional relations. U.S. Geological Survey Professional Paper 1309, 36 p. Doi:

[122]

Tasistro-Hart, A.R., Macdonald, F.A., 2023. Phanerozoic flooding of North America and the Great Unconformity. Proc. Nat. Acad. Sci. U.S.A. 120 (37), e2309084120. Doi:

[123]

Taylor, R.S., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, pp. 312.

[124]

Taylor, J.F., Repetski, J.E., Loch, J.D., Leslie, S.A., 2012. Biostratigraphy and chronostratigraphy of the Cambrian – Ordovician great American carbonate bank. In: Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., Sternbach, C.A. (Eds.), The great American carbonate bank: The geology and economic resources of the Cambrian – Ordovician Sauk megasequence of Laurentia. AAPG Memoir 98, 15–35.

[125]

P. Vermeesch. IsoplotR: a free and open toolbox for geochronology. Geosci. Front., 9 (2018), pp. 1479-1493

[126]

P. Vermeesch. Maximum depositional age estimation revisited. Geosci. Front., 12 (2021), pp. 843-850

[127]

C.J. Wall, R.E. Hanson, M. Schmitz, J.D. Price, R.N. Donovan, J.R. Boro, A.M. Eschberger, C.E. Toews. Integrating zircon trace-element geochemistry and high-precision U-Pb zircon geochronology to resolve the timing and petrogenesis of the late Ediacaran–Cambrian Wichita igneous province, southern Oklahoma Aulacogen, USA. Geology, 49 (2021), pp. 268-272

[128]

Warren, M.J., 1997. Crustal Extension and Subsequent Crustal Thickening Along the Cordilleran Rifted Margin of Ancestral North America, Western Purcell Mountains, Southeastern British Columbia. Ph.D. thesis. Queen’s University, 475 p.

[129]

A.B. Weil, J.W. Geissman, R. Van der Voo. Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: implications for Laurentia’s Neoproterozoic APWP and Rodinia break-up. Precambrian Res., 129 (2004), pp. 71-92,

[130]

B. Wen, D.A.D. Evans, Y.-X. Li. Neoproterozoic paleogeography of the Tarim Block: An extended or alternative “missing-link” model for Rodinia? Earth Planet. Sci. Lett., 458 (2017), pp. 92-106,

[131]

B. Wen, D.A.D. Evans, C. Wang, Y.-X. Li, X. Jing. A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly. Geology, 46 (2018), pp. 687-690,

[132]

R. White, D. McKenzie. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geophys. Res., 94 (B6) (1989), pp. 7685-7729

[133]

R.B. Whitmarsh, G. Manatschal, T.A. Minshull. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413 (2001), pp. 150-154

[134]

S. Whitmeyer, K. Karlstrom. Tectonic model for the Proterozoic growth of North America. Geosphere, 3 (2007), pp. 220-259,

[135]

R. Witkosky, B.P. Wernicke. Subsidence history of the Ediacaran Johnnie Formation and related strata of southwest Laurentia: Implications for the age and duration of the Shuram isotopic excursion and animal evolution. Geosphere, 14 (5) (2018), pp. 2245-2276

[136]

W.A. Yonkee, C.D. Dehler, P.K. Link, E.A. Balgord, J.A. Keeley, D.S. Hayes, M.L. Wells, C.M. Fanning, S.M. Johnston. Tectono-stratigraphic framework of Neoproterozoic to Cambrian strata, central- U.S.: Protracted rifting, glaciation, and evolution of the North American Cordilleran margin. Earth-Sci. Rev., 136 (2014), pp. 59-95,

AI Summary AI Mindmap
PDF

882

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/