Tectonic setting of the Youjiang giant tin belt, South China: New findings from the Pingna W-Sn deposit
Changhao Xiao, Zhengle Chen, Changshan Wei, Pingping Yu, Xiangchong Liu, Yanwen Tang, Yu Zhang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102006.
Tectonic setting of the Youjiang giant tin belt, South China: New findings from the Pingna W-Sn deposit
Growing evidence suggests that extensional/transtensional settings are favorable for the formation of tin deposits, yet the underlying geodynamic mechanism remains equivocal. The Pingna W-Sn deposit, found in the underexplored interior of the giant tin belt within the Youjiang Basin, South China, offers a unique opportunity to explore and better constrain the current geodynamic model for tin mineralization. This deposit, composed of NW- to NWN-striking vein swarms with W-Sn mineralization, is hosted in the Middle Triassic clastic rocks without igneous rocks near its mineralization. Structural analysis indicates that the Youjiang fold-and-fault belt and the ore-related structures in the Pingna deposit experienced five deformation phases (D1–D5). The pre-ore NE-striking compression (D1; σv = σ3) initiated fault-fracture meshes, followed by NE-striking extension (D2), while NW-striking compression (D3; σv = σ2) enhanced the vertical connectivity of the meshes. Syn-mineralization E-W extension (D4; σv = σ1) facilitated upward through-going flow and hydrothermal fluids infilled the meshes, forming a fault-vein system. The mineralized veins were cut across by post-ore WNW-striking oblique fault with sinistral and normal components (D5). The meshes dictated Sn-W orebodies localization. Hydrothermal veins formed in three stages: (I) muscovitization-bordered tin-dominated quartz vein swarms along the Pingna fault; (II) W-dominated lit-par-lit vein system; and (III) barren calcite veins crosscutting the former veins. The Pingna W-Sn mineralization formed during the Late Cretaceous as constrained by the cassiterite (Cst1) U-Pb age of 95.6 ± 2.4 Ma (2σ, MSWD = 1.2), muscovite (Ms1) 40Ar-39Ar plateau age of 93.9 ± 0.1 Ma (2σ, MSWD = 1.7), and molybdenite Re-Os age of 92.9 ± 1.2 Ma (2σ, MSWD = 0.3). Outward lateral zoning of the Sn-W mineralization, as well as associated muscovitization and silicification implies the epicenter of hydrothermal fluid is near the No. II vein swarm. Contemporaneous felsic dykes coupling with the inferred intrusions demonstrate that the Pingna deposit is a distal hydrothermal W-Sn deposit. The releasing bend of the NW-striking Pingna fault controlled the distribution of tin-dominated mineralization, while the anticlines controlled the tungsten-dominated mineralization. Our findings suggest that the localization and formation of the Pingna W-Sn veins were controlled by Late-Cretaceous regional transtensional stress field and polyphase deformation, rather than previously proposed local extension of the Youjiang Basin. The discovery of the Pingna W-Sn deposit highlights the interior of the Youjiang Basin as a promising area for tungsten-tin exploration.
South China / Youjiang Basin / Tectonic setting / Late Cretaceous / Pingna W-Sn deposit / Muscovitization-bordered quartz vein swarms
[] |
M.H. Cai, J.W. Mao, T. Liang, F. Pirajno, H.L. Huang. The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China: clues from fluid inclusions and He isotope systematic. Mineral. Deposita, 42 (2007), pp. 613-626
|
[] |
J.X. Cai, K.J. Zhang. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467 (2009), pp. 35-43
|
[] |
P.A. Carr, S. Zink, V.C. Bennett, M.D. Norman, Y. Amelin, P.L. Blevin. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, eastern Australia. Chem. Geol., 539 (2020), pp. 119-539
|
[] |
L.M. Cathles, A.H.J. Erendi, T. Barrie. How long can a hydrothermal system be sustained by a single intrusive event?. Econ. Geol., 92 (1997), pp. 766-771
|
[] |
P.A. Cawood, G.C. Zhao, J.L. Yao, W. Wang, Y.J. Xu, Y.J. Wang. Reconstructing South China in phanerozoic and precambrian supercontinents. Earth Sci. Rev., 186 (2018), pp. 173-194
|
[] |
Cerny, P., Blevin, P.L., Cuney, M., London, D., 2005. Granite-Related Ore Deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), One Hundredth Anniversary Volume. Society of Economic Geologists 350, pp. 337–370.
|
[] |
C. Chelle-Michou, B. Rottier, L. Caricchi, G. Simpson. Tempo of magma degassing and the genesis of porphyry copper deposits. Scientific Rep., 7 (2017), Article 40566
|
[] |
M.H. Chen, G. Lu, X.H. Li. Muscovite 40Ar/39Ar dating of the quartz porphyry veins from Northwest Guangxi, China, and its geological significance. Geol. J. China Univ., 18 (2012), pp. 106-116
|
[] |
J.H. Chen, Q.F. Wang, Q.H. Shu, W.J. Weng, X.J. Xu, T.Y. Wang, Q.Z. Zhang. Geology and genesis of the Debao Cu polymetallic skarn deposit, southwestern China. Ore Geol. Rev., 131 (2021), Article 104046
|
[] |
M.H. Chen, Y. Zhang, Y.Y. Meng, G. Lu, S.Q. Liu. Determination of upper limit of metallogenic epoch of Liaotun gold deposit in Western Guangxi and its implications for chronology of carlin-type gold deposits in Yunnan-Guizhou-Guangxi “Golden Triangle” area. Mineral. Deposita, 33 (2014), pp. 1-13
|
[] |
M.H. Chen, L. Bagas, X. Liao, Z.Q. Zhang, Q.L. Li. Hydrothermal apatite SIMS Th-Pb dating: Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao, SW China. Lithos, 324–325 (2019), pp. 418-428
|
[] |
Y.B. Cheng, J.W. Mao, Z. Yang, J. Feng, H. Zhao. LA-ICP-MS zircon dating of the alkaline rocks and lamprophyres in Gejiu area and its implications. Geol. China, 35 (2008), pp. 1138-1149
|
[] |
Y.B. Cheng, J.W. Mao, C. Spandler. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia Block, South China. Lithos, 175–176 (2013), pp. 213-229
|
[] |
G.X. Chi, D.E. Xu, C.J. Xue, Z.H. Li, P. Ledru, T. Deng, Y.M. Wang, H. Song. Hydrodynamic links between shallow and deep mineralization systems and implications for deep mineral exploration. Acta Geol. Sin.-Engl. Ed., 96 (1) (2022), pp. 1-25
|
[] |
Chiaradia, M., Schaltegger, U., Spikings, R., 2014. Time scales of mineral systems-advances in understanding over the past decade. In: SEG Conference on Keystone-Building Exploration Capability for the 21st, Keystone, CO, 18, pp. 37–58.
|
[] |
S.F. Cox. The dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems. J.V. Rowland, D.A. Rhys (Eds.), Applied Structural Geology of Ore-Forming Hydrothermal Systems, Society of Economic Geologists Inc, Littleton (2020), pp. 25-82
|
[] |
M.H. Dodson. Closure temperature in cooling geochronological and petrological systems. Contrib. Miner. Petrol., 40 (1973), pp. 259-274
|
[] |
L. Duan, Q.R. Meng, G.L. Wu, Z. Yang, J.Q. Wang, R.R. Zhan. Nanpanjiang basin: a window on the tectonic development of south China during Triassic assembly of the southeastern and eastern Asia. Gondw. Res., 78 (2020), pp. 189-209
|
[] |
M. Faure, Y. Chen, Z.H. Feng, L.S. Shu, Z.Q. Xu. Tectonics and geodynamics of South China: an introductory note. J. Asian Earth Sci., 141 (2017), pp. 1-6
|
[] |
W. Gao, R.Z. Hu, A.H. Hofstra, Q.L. Li, J.J. Zhu, K.Q. Peng, L. Mu, Y. Huang, J.W. Ma, Q. Zhao. U-Pb dating on hydrothermal rutile and monazite from the Badu gold deposit supports an Early Cretaceous age for Carlin-type gold mineralization in the Youjiang basin, Southweatern China. Econ. Geol., 116 (2021), pp. 1355-1385
|
[] |
Guangxi Zhuang Autonomous Region Bureau of Geology and Mineral Exploration and Development (BGMED). . Regional Geological Survey Report (1:200000 Tianlin Sheet Area), China University of Geosciences Press, Guangxi (1971), p. 38
|
[] |
J. Guo, R.Q. Zhang, W.D. Sun, M.X. Ling, Y.B. Hu, K. Wu, M. Luo, L.C. Zhang. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: insights from cassiterite U-Pb ages and trace element compositions. Ore Geol. Rev., 95 (2018), pp. 863-879
|
[] |
C.A. Heinrich. The chemistry of hydrothermal tin (-tungsten) ore deposition. Econ. Geol., 85 (1990), pp. 457-481
|
[] |
K.F.G. Hosking. The nature of the primary tin ores of the Southwest of England. A Second Technical Conference on Tin, I.T.C, Bangkok (1970), pp. 1155-1243
|
[] |
J.X. Hu, C.H. Xiao, C.S. Wei, Y.K. Shen, Z.L. Cheng, Y. Zhang, D. Zhang. Polyphase deformation of the Youjiang fold-and-thrust belt during the Mesozoic: implications for the tectonic transition of the South China block. Front. Earth Sci., 10 (2023), Article 1033541
|
[] |
R.Z. Hu, M.F. Zhou. Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue. Miner. Deposita, 47 (2012), pp. 579-588
|
[] |
R.Z. Hu, W.T. Chen, D.R. Xu, M.F. Zhou. Reviews and new metallogenic models of mineral deposits in South China: an introduction. J. Asian Earth Sci., 137 (2017), pp. 1-8
|
[] |
X.L. Huang, L.Z. Pan, G. Lu, F.Y. Zhong, L.H. Wu, S.N. Ling, J.J. Zhou. Geological-geochemical characteristics and genesis of Najie quartz porphyry in Longchuan, western Guangxi. Miner. Resour. Geol., 32 (2018), pp. 305-313
|
[] |
Z.W. Jiang, N.H.S. Oliver, T.D. Barr, W.L. Power, A. Ord. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China. Econ. Geol., 92 (2) (1997), pp. 28-247
|
[] |
M. Korges, P. Weis, V. Lüders, O. Laurent. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 46 (1) (2018), pp. 75-78
|
[] |
T.A.P. Kwak, A.J.R. White. Contrasting W-Mo-Cu and W-Sn-F skarn types and related granitoids. Min. Geol., 32 (174) (1982), pp. 339-351
|
[] |
B. Lehmann. Formation of tin ore deposits: a reassessment. Lithos, 402 (2021), Article 105756
|
[] |
P.H. Leloup, R. Lacassin, P. Tapponnier, U. Schärer, D.L. Zhong, X.H. Liu, L.S. Zhang, S.C. Ji, T.T. Phan. The Ailao Shan–Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251 (1995), pp. 3-84
|
[] |
S.Z. Li, X.Y. Li, S.J. Zhao, Z. Yang, X. Liu, L.L. Guo, Y.M. Wang, Y. Hao, J. Zhang, M.Y. Hu. Global Early Paleozoic Orogens (III): intracontinental orogen in South China. J. Jilin Univ. (Earth Sci. Ed.), 46 (2016), pp. 1005-1025
|
[] |
S.Z. Li, Y.H. Suo, X.Y. Li, J. Zhou, M. Santosh, P.P. Wang, G.Z. Wang, L.L. Guo, S.Y. Yu, H.Y. Lan, L.M. Dai, Z.Z. Zhou, X.Z. Cao, J.J. Zhu, B. Liu, S.H. Jiang, G. Wang, G.W. Zhang. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth Sci. Rev., 192 (2019), pp. 91-137
|
[] |
Y.P. Liu, Z.X. Li, H.M. Li, L.G. Guo, W. Xu, L. Ye, C.Y. Li, D.H. Pi. U-Pb geochronology of cassiterite and zircon from Dulong Sn-Zn deposit: evidence for Cretaceous Lager-scale granitic magmatism and mineralization events in southeastern Yunnan province, China. Acta Petrol. Sin., 23 (2007), pp. 967-976
|
[] |
S. Liu, W.C. Su, R.Z. Hu, C.X. Feng, S. Gao, I.M. Coulson, T. Wang, G.Y. Feng, Y. Tao, Y. Xia. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China. Lithos, 114 (2010), pp. 253-264
|
[] |
H.C. Liu, X.P. Xia, C.K. Lai, C.S. Gan, Y.Z. Zhou, P.P. Huangfu. Break-away of South China from Gondwana: Insights from the Silurian high-Nb basalts and associated magmatic rocks in the Diancangshan-Ailaoshan fold belt (SW China). Lithos, 318–319 (2018), pp. 194-208
|
[] |
X.C. Liu, C.H. Xiao. Wolframite solubility and precipitation in hydrothermal fluids: insight from thermodynamic modeling. Ore Geol. Rev., 117 (2020), pp. 103-289
|
[] |
X.C. Liu, C.H. Xiao, Y. Wang. The relative solubilities of wolframite and scheelite in hydrothermal fluids: insights from thermodynamic modeling. Chem. Geol., 584 (2021), Article 120488
|
[] |
X.C. Liu, P.P. Yu, C.H. Xiao. Tin transport and cassiterite precipitation from hydrothermal fluids. Geosci. Front., 14 (6) (2023), Article 101624
|
[] |
J.W. Mao, Y.B. Cheng, M.H. Chen, F. Pirajno. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineral. Deposita, 48 (2013), pp. 267-294
|
[] |
J.W. Mao, H.G. Ouyang, S.W. Song, M. Santosh, S.D. Yuan, Z.H. Zhou, W. Zheng, H. Liu, P. Liu, Y.B. Cheng, M.H. Chen. Geology and metallogeny of tungsten and tin deposits in China. SEG Spec. Publ., 22 (2019), pp. 411-482
|
[] |
P.A. Nevolko, T.H. Tran, D.S. Yudin, T.P. Ngo. Ar-Ar ages of gold deposits in the Song Hien domain (NE Vietnam): tectonic settings and comparison with Golden Triangle in China in terms of a single metallogenic province. Ore Geol. Rev., 89 (2017), pp. 544-556
|
[] |
L.A. Neymark, C.S. Holm-Denoma, R.J. Moscati. In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chem. Geol., 483 (2018), pp. 410-425
|
[] |
P. Ni, J.-Y. Pan, L. Han, J.-M. Cui, Y. Gao, M.-S. Fan, W.-S. Li, Z. Chi, K.-H. Zhang, Z.-L. Cheng, Y.-P. Liu. Tungsten and tin deposits in South China: temporal and spatial distribution, metallogenic models and prospecting directions. Ore Geol. Rev., 157 (2023), Article 105453
|
[] |
L.K. Ren. Analysis of structural styles and kinematics characteristics in Nanpanjiang Basin. J. Kunming Univ. Sci. Technol. (Nat. Sci. Ed.), 37 (2012), pp. 1-4
|
[] |
R.L. Romer, U. Kroner. Phanerozoic tin and tungsten mineralization—tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondw. Res., 31 (2016), pp. 60-95
|
[] |
C. Schmidt, R.L. Romer, C.C. Wohlgemuth-Ueberwasser, O. Appelt. Partitioning of Sn and W between granitic melt and aqueous fluid. Ore Geol. Rev., 117 (2020), Article 103263
|
[] |
D. Selby, B.R. Creaser, C.J.R. Hart, C.S. Rombach, J.F.H. Thompson, M.T. Smith, A.A. Bakke, R.J. Goldfarb. Absolute timing of sulfide and gold mineralization: a comparison of Re–Os molybdenite and Ar–Ar mica methods from the Tintina Gold Belt, Alaska. Geology, 30 (2002), pp. 791-794
|
[] |
J. Shen, Y.P. Wang, F.M. Song. Characteristics of the active Xiaojiang fault zone in Yunnan, China: a slip boundary for the southeastward escaping Sichuan-Yunnan block of the Tibetan Plateau. J. Asian Earth Sci., 21 (10) (2003), pp. 1085-1096
|
[] |
L.S. Shu, J.L. Yao, B. Wang, M. Faure, J. Charvet, Y. Chen. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth Sci. Rev., 216 (2021), Article 103596
|
[] |
R.H. Sibson. Stopping of earthquake ruptures at dilational fault jogs. Nature, 316 (1985), pp. 248-251
|
[] |
S.W. Song, J.W. Mao, S.D. Yuan, W. Jian. Decoupling of Sn and W mineralization in a highly fractionated reduced granitic magma province: a case study from the Youjiang basin and Jiangnan tungsten belt. Miner. Deposita, 57 (2022), pp. 1251-1267
|
[] |
I. Sparrenberger. . Instituto de Geociências, Ph.D thesis. Universidade de São Paulo (2003), p. 252
|
[] |
H.J. Stein. Dating and tracing the history of ore formation. K.K. Turekian, H.D. Holland, S.D. Scott (Eds.), Treatise in Geochemistry (second ed.), Elsevier, Oxford (2014), pp. 87-118
|
[] |
W.C. Su, W.D. Dong, X.C. Zhang, N.P. Shen, R.Z. Hu, A.H. Hofstra, L.Z. Cheng, Y. Xia, K.Y. Yang. Carlin-type gold deposits in the Dian-Qian-Gui “golden triangle” of Southwest China. Rev. Econ. Geol., 20 (2018), pp. 157-185
|
[] |
W.D. Sun, S.G. Li. Reconstruction of the pacific plate: constraints from ocean floor and eastern China. Innov. Geosci., 1 (2023), Article 100013
|
[] |
Y.W. Tang, J.J. Han, T.G. Lan, J.F. Gao, L. Liu, C.H. Xiao, J.H. Yang. Two reliable calibration methods for accurate in-situ U-Pb dating of scheelite. J. Anal. At. Spectrom, 37 (2022), pp. 358-368
|
[] |
P. Tapponnier, R. Lacassin, P.H. Leloup, U. Schärer, D. Zhong, X. Liu, S. Ji, L. Zhang, J. Zhong. The Ailao Shan-Red River metamorphic belt: tertiary left-lateral shear between Indochina and south China. Nature, 343 (1990), pp. 431-437
|
[] |
U.S. Geological Survey (USGS). Mineral commodity summaries 2023. U.S. Geological Survey, 210 (2023),
CrossRef
Google scholar
|
[] |
E.C. Wang, B.C. Burchfiel. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis. Int. Geol. Rev., 39 (1997), pp. 191-219
|
[] |
Q.F. Wang, D.I. Groves. Carlin-style gold deposits, Youjiang Basin, China: tectono-thermal and structural analogues of the Carlin-type gold deposits, Nevada, USA. Miner. Deposita, 53 (2018), pp. 909-918
|
[] |
X.Y. Wang, X.K. Wu, C. He, Y. Shi, X.J. Liu, W. Fu, Y.C. Wang. Phlogopite 40Ar/39Ar dating of the lamproite veins in Du’an Country, central Guangxi and its tectonic significance. Geol. Bull. China, 38 (4) (2019), pp. 680-688
|
[] |
Q.F. Wang, L. Yang, X.J. Xu, M. Santosh, Y.N. Wang, T.Y. Wang, F.G. Chen, R.X. Wang, L. Gao, X.F. Liu, S.J. Yang, Y.S. Zeng, J.H. Chen, Q.Z. Zhang, J. Deng. Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: a holistic perspective from the Youjiang Basin. Earth Sci. Rev., 211 (2020), Article 103405
|
[] |
J. Wu, H.W. Yuan, N.J. Gan, S.C. Wei, J. Liao, J. Zhang, H.Y. Liang. Source characteristics of magmatic rocks and zircon U-Pb age in the Mangchang ore field, Danchi metallogenic belt, Guangxi. Acta Petrol. Sin., 36 (2020), pp. 1586-1596
|
[] |
Y. Wu, S. Zhang, Z. Huang, F.G. Wang, J.X. Li, C.H. Xiao, J.L. Ye, C. Zhang. Meso-Cenozoic tectonic evolution of the Nandan-Libo area, Northwestern Guangxi, China: Evidence from Palaeo-tectonic stress fields analyses. Geotecton. Metallog., 43 (2019), pp. 872-893
|
[] |
X.P. Xia, X.S. Nie, C.K. Lai, Y.J. Wang, X.P. Long, S. Meffre. Where was the Ailaoshan Ocean and when did it open: a perspective based on detrital zircon U–Pb age and Hf isotope evidence. Gondw. Res., 36 (2016), pp. 488-502
|
[] |
C.H. Xiao, Z.L. Chen, X.C. Liu, C.S. Wei, Y. Wu, Y.W. Tang, X.Y. Wang. Structural analysis, mineralogy, and cassiterite U-Pb ages of the Wuxu Sb-Zn-polymetallic district, Danchi Fold-and-Thrust belt, South China. Ore Geol. Rev., 150 (2022), Article 105150
|
[] |
R. Xu, R.L. Romer, U. Kroner, J. Deng. Tectonic control on the spatial distribution of Sn mineralization in the Gejiu Sn district, China. Ore Geol. Rev., 148 (2022), Article 105004
|
[] |
W. Xue, D. Zhang, C.Y. Li, Y. Fang, Z.D. Chen. Structure ore-controlling model and prospecting research for the Dulong Sn-Zn-In polymetallic deposit, Southeastern Yunnan. J. Geomech., 25 (1) (2019), pp. 77-89
|
[] |
D.P. Yan, M.F. Zhou, Y. Wang, C.L. Wang, T.P. Zhao. Structural styles and chronological evidences from Dulong-Song Chay tectonic dome: earlier Spreading of South China Sea Basin due to late Mesozoic to early Cenozoic Extension of South China block. Earth Sci.-J. China Univ. Geosci., 30 (2005), pp. 402-412
|
[] |
F. Yang, Z.H. Feng, Z.Q. Kang, R. Xiao. Muscovite 40Ar-39Ar age of the Damingshan tungsten deposit in central Guangxi and its geological significance. Geol. Bull. China, 30 (2011), pp. 1429-1433
|
[] |
M. Yang, R.L. Romer, Y.H. Yang, S.T. Wu, H. Wang, J.R. Tu, H.Y. Zhou, L.W. Xie, C. Huang, L. Xu, J.H. Yang, F.Y. Wu. U-Pb isotopic dating of cassiterite: development of reference materials and in situ applications by LA-SF-ICP-MS. Chem. Geol., 593 (2022), Article 120754
|
[] |
W.X. Yang, D.P. Yan, L. Qiu, F. Chen, H.X. Mu, X.W. Wang. The Mesozoic-Cenozoic deformation sequences of the Badu complex anticline and their significance for the evolution of the Nanpanjiang Basin. Earth Sci. Front., 25 (2018), pp. 33-46
|
[] |
W.X. Yang, D.P. Yan, L. Qiu, M.L. Wells, J.M. Dong, T. Gao, Z. Zhang, H.X. Mu, X.W. Wang, F.Y. Wang. Formation and Forward Propagation of the Indosinian Foreland Fold-Thrust Belt and Nanpanjiang Foreland Basin in SW China. Tectonics, 40 (2021), Article e2020TC006552
|
[] |
E.B. Yeap. Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development. J. SE Asian Earth Sci., 8 (1993), pp. 329-348
|
[] |
S.D. Yuan, J.T. Peng, S. Hao, H.M. Li, J.Z. Geng, D.L. Zhang. In situ LA-MC-ICP-MS and ID-TIMS U–Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: new constraints on the timing of tin–polymetallic mineralization. Ore Geol. Rev., 43 (2011), pp. 235-242
|
[] |
R.Q. Zhang, B. Lehmann, R. Seltmann, W.D. Sun, C.Y. Li. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: the classic Erzgebirge tin province (Saxony and Bohemia). Geology, 45 (2017), pp. 1095-1098
|
[] |
D.L. Zhang, J.T. Peng, R.Z. Hu, S.D. Yuan, D.S. Zheng. The closure of U–Pb isotope system in cassiterite and its reliability for dating. Geol. Rev., 57 (2011), pp. 549-554
|
[] |
Y. Zhang, C.H. Xiao, C.S. Wei, S.Q. Yu. Fluid evolution and mineralizing process of the Bawang Fe-Zn-Sn deposit, Danchi Fold-and-Thrust belt, South China. Ore Geol. Rev., 163 (2023), Article 105772
|
[] |
Z.Y. Zhao, L. Hou, J. Ding, Q.M. Zhang, S.Y. Wu. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block: a case study of the Dulong Sn-dominant polymetallic deposit. Ore Geol. Rev., 93 (2018), pp. 268-289
|
[] |
G.Q. Zhu, H.L. Li, R.X. Wen. Prediction and analysis of deep mineral exploration in Guangxi. Chin. J. Eng. Geophys., 8 (2011), pp. 713-722
|
[] |
J.J. Zhu, H. Zhong, G.Q. Xie, C.H. Zhao, L.L. Xu, G. Lu. Origin and geological implication of the inherited zircon from felsic dykes, Youjiang basin, China. Acta Petrol. Sin., 32 (2016), pp. 3269-3280
|
/
〈 |
|
〉 |