Toxic impacts of polystyrene nanoplastics and PCB77 in blunt snout bream: Evidence from tissue morphology, oxidative stress and intestinal microbiome
Fang Chen, Zhen Li, Zeliang Su, Hongping Liao, Dandan Gao, Linyong Zhi, Chunmiao Kong, Qingzhi Zheng, Jun Wang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102005.
Toxic impacts of polystyrene nanoplastics and PCB77 in blunt snout bream: Evidence from tissue morphology, oxidative stress and intestinal microbiome
Polystyrene nanoplastics (PS-NPs) and 3,3′,4,4′-tetrachlorobiphenyl (PCB77) are common pollutants in freshwater aquatic environments. To investigate the separate and combined toxicity of these two pollutants on the freshwater blunt snout bream (Megalobrama amblycephala), 270 juveniles were randomly assigned to six exposure treatments: the control group, CT (free of PS-NPs and PCB77), three single exposure groups, PS-L (0.2 mg/L PS-NPs), PS-H (2 mg/L PS-NPs), PCB (0.01 mg/L PCB77), and two combined exposure groups, PP-L (0.2 mg/L PS-NPs + 0.01 mg/L PCB77) and PP-H (2 mg/L PS-NPs + 0.01 mg/L PCB77). After a seven-day exposure, the tissue histopathology, antioxidant capacity, inflammatory response, and gut microbiome composition of fish were analyzed. The results showed that tissue fluorescence intensity of PS-NPs increases as the exposure levels of PS-NPs increase, and the combined exposure groups exhibited higher fluorescence intensity compared to their single PS-NPs exposure groups. Histopathological analysis showed that the exposure groups exhibited varying degrees of damage to the intestinal tissue compared to the control group, with more severe damage observed in the combined exposure groups. Additionally, liver damage was evident in the PS-H, PP-L and PP-H groups. Furthermore, the highest catalase (CAT) activities and malondialdehyde (MDA) contents were found in the intestine and liver of fish in the PP-L and PP-H groups. The mRNA levels of inflammatory factors (il, il-1β, il-8, il-6, il-10, and tnf-α) were up-regulated in the PS-H, PP-L and PP-H groups compared to those of the CT group. In addition, remarkable alternations in the intestinal microbiome compositions were observed among the groups: the abundance of Verrucomicrobiome and Planctomycetota increased in all exposed groups compared to that of the control group, while the abundance of Actinobacteriota was significantly reduced in the exposure groups. Functional prediction of microbiota indicated that the amino acid and carbohydrate metabolism, as well as intestinal structure, were impaired in the PS-NPs and PCB77 exposure groups. The results suggested that the toxicity of PS-NPs on M. amblycephala including tissue injury, oxidative stress, and disturbance of intestinal microbiota, depends not only on concentration but also increases when co-exposed to PCB77. This finding raises concerns about the ecological safety in freshwater aquatic environments.
Nanoplastics / PCB77 / Megalobrama amblycephala / Oxidative stress / Intestinal microbiome
B.D. Abera, M.A. Adimas. Health benefits and health risks of contaminated fish consumption: current research outputs, research approaches, and perspectives. Heliyon, 10 (13) (2024), Article e33905,
CrossRef
Google scholar
|
A. Arocho, B. Chen, M. Ladanyi, Q. Pan. Validation of the 2−ΔΔCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn. Mol. Pathol., 15 (1) (2006), pp. 56-61,
CrossRef
Google scholar
|
Y. Cao, L. Bi, Q. Chen, Y. Liu, H. Zhao, L. Jin, R. Peng. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: a review. Environ. Pollut., 352 (2024), Article 124103,
CrossRef
Google scholar
|
M. Chen, X. Bao, Y. Yue, K. Yang, H. Liu, Y. Yang, H. Yu, Y. Yu, N. Duan. Combined effects of cadmium and nanoplastics on oxidative stress, histopathology, and intestinal microbiota in largemouth bass (Micropterus salmoides). Aquaculture, 569 (2023), Article 739363,
CrossRef
Google scholar
|
H. Cheng, Y. Dai, X. Ruan, X. Duan, C. Zhang, L. Li, F. Huang, J. Shan, K. Liang, X. Jia, Q. Wang, H. Zhao. Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax quadricarinatus) based on high-throughput sequencing. Ecotox. Environ Safe., 245 (2022), Article 114114,
CrossRef
Google scholar
|
J. Ding, Y. Huang, S. Liu, S. Zhang, H. Zou, Z. Wang, W. Zhu, J. Geng. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?. J. Hazard. Mater., 396 (2020), Article 122693,
CrossRef
Google scholar
|
E. Frantsuzova, A. Bogun, L. Shishkina, A. Vetrova, I. Solyanikova, Y. Delegan. Insights into the potential role of Gordoni alkanivorans strains in biotechnologies. Processes, 11 (11) (2023), p. 3184,
CrossRef
Google scholar
|
L. Gao, B. Fang, C. Lu, K. Hong, X. Huang, T. She, M. Xiao, W. Li. Unraveling the genomic diversity and ecological potential of the genus Demequina: insights from comparative analysis of different saline niche strains. Front. Mar. Sci., 10 (2023), Article 1244849,
CrossRef
Google scholar
|
V. Godoy, G. Blazquez, M. Calero, L. Quesada, M.A. Martın-Lara. The potential of microplastics as carriers of metals. Environ. Pollut., 255 (3) (2019), Article 113363,
CrossRef
Google scholar
|
M.C. Guerrera, M. Aragona, C. Porcino, F. Fazio, R. Laurà, M. Levanti, G. Montalbano, G. Germanà, F. Abbate, A. Germanà. Micro and nano plastics distribution in fish as model organisms: histopathology, blood response and bioaccumulation in different organs. Appl. Sci., 11 (13) (2021), p. 5768,
CrossRef
Google scholar
|
T. Habumugisha, Z. Zhang, C. Uwizewe, C. Yan, J.C. Ndayishimiye, A. Rehman, X. Zhang. Toxicological review of micro-and nano-plastics in aquatic environments: risks to ecosystems, food web dynamics and human health. Ecotox. Environ. Safe., 278 (2024), Article 116426,
CrossRef
Google scholar
|
T.B. Henry. Ecotoxicology of polychlorinated biphenyls in fish—a critical review. Crit. Rev. Toxicol., 45 (8) (2015), pp. 643-661,
CrossRef
Google scholar
|
E. Hoyo-Alvarez, P. Arechavala-Lopez, M. Jiménez-García, A. Solomando, C. Alomar, A. Sureda, D. Moranta, S. Deudero. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. Aquat. Toxicol., 242 (2022), Article 106048,
CrossRef
Google scholar
|
Y. Hu, F. Nie, M. Zhang, Q. Song, W. Wei, G. Lv, Y. Wei, D. Kang, Z. Chen, H. Lin, J. Chen. Developmental toxicity and mechanism of polychlorinated biphenyls 126 and nano-polystyrene combined exposure to zebrafish larvae. Ecotox. Environ. Safe., 278 (2024), Article 116419,
CrossRef
Google scholar
|
Y. Huang, G. Jiang, K. Abasubong, C. Wang, L. Zhang, Y. Dai, X. Zheng, X. Cao, C. He, X. Wang, K. Xiao, X. Li, Y. Wu, W. Liu. High lipid and high carbohydrate diets affect muscle growth of blunt snout bream (Megalobrama amblycephala) through different signaling pathways. Aquaculture, 548 (2022), Article 737495,
CrossRef
Google scholar
|
J. Huang, B. Wen, L. Meng, X. Li, M. Wang, J. Gao, Z. Chen. Integrated response of growth, antioxidant defense and isotopic composition to microplastics in juvenile guppy (Poecilia reticulata). J. Hazard. Mater., 399 (2020), Article 123044,
CrossRef
Google scholar
|
T. Islam, H. Cheng. Existence and fate of microplastics in terrestrial environment: a global fretfulness and abatement strategies. Sci. Total Environ., 953 (2024), Article 176163,
CrossRef
Google scholar
|
Y. Jin, J. Xia, Z. Pan, J. Yang, W. Wang, Z. Fu. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut., 235 (2018), pp. 322-329,
CrossRef
Google scholar
|
V.C. Kalia, C. Gong, R. Shanmugam, H. Lin, L. Zhang, J.K. Lee. The emerging biotherapeutic agent: Akkermansia. Indian J. Microbiol., 62 (1) (2022), pp. 1-10,
CrossRef
Google scholar
|
V.S. Kavagutti, M.C. Chiriac, R. Ghai, M.M. Salcher, M. Haber. Isolation of phages infecting the abundant freshwater Actinobacteriota order ‘Ca. Nanopelagicales’. ISME J., 17 (6) (2023), pp. 943-946,
CrossRef
Google scholar
|
J.H. Kim, Y. Yu, J.H. Choi. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: a review. J. Hazard. Mater., 413 (2021), Article 125423,
CrossRef
Google scholar
|
C. Kong, T. Pan, X. Chen, M. Junaid, H. Liao, D. Gao, Q. Wang, W. Liu, X. Wang, J. Wang. Exposure to polystyrene nanoplastics and PCB77 induced oxidative stress, histopathological damage and intestinal microbiome disruption in white hard clam Meretrix lyrata. Sci. Total Environ., 905 (2023), Article 167125,
CrossRef
Google scholar
|
D. Lauritano, F. Mastrangelo, C. D’Ovidio, G. Ronconi, A. Caraffa, C.E. Gallenga, I. Frydas, S.K. Kritas, M. Trimarchi, F. Carinci, P. Conti. Activation of mast cells by neuropeptides: the role of pro-inflammatory and anti-inflammatory cytokines. Int. J. Mol. Sci., 24 (5) (2023), p. 4811,
CrossRef
Google scholar
|
D. Li, Y. Huang, S. Gao, L. Chen, M. Zhang, Z. Du. Sex-specific alterations of lipid metabolism in zebrafish exposed to polychlorinated biphenyls. Chemosphere, 221 (2019), pp. 768-777,
CrossRef
Google scholar
|
Y. Li, S. Liu, Q. Wang, Y. Zhang, X. Chen, L. Yan, M. Junaid, J. Wang. Polystyrene nanoplastics aggravated ecotoxicological effects of polychlorinated biphenyls in on zebraffsh (danio rerio) embryos. Geosci. Front., 13 (3) (2022), Article 101376,
CrossRef
Google scholar
|
W. Lin, Z. Wu, Y. Wang, R. Jiang, G. Ouyang. Size-dependent vector effect of microplastics on the bioaccumulation of polychlorinated biphenyls in tilapia: a tissue-specific study. Sci. Total Environ., 915 (2024), Article 170047,
CrossRef
Google scholar
|
M. Liu, S. Fan, Z. Rong, H. Qiu, S. Yan, H. Ni, Z. Dong. Exposure to polychlorinated biphenyls (PCBs) affects the histology and antioxidant capability of the clam Cyclina sinensis. Front. Mar. Sci., 10 (2023), Article 1076870,
CrossRef
Google scholar
|
H. Liu, F. Nie, H. Lin, Y. Ma, X. Ju, J. Chen, R. Gooneratne. Developmental toxicity, oxidative stress, and related gene expression induced by dioxin‐like PCB 126 in zebrafish (Danio rerio). Environ. Toxicol., 31 (3) (2016), pp. 295-303,
CrossRef
Google scholar
|
J. Liu, Y. Tan, E. Song, Y. Song. A critical review of polychlorinated biphenyls metabolism, metabolites, and their correlation with oxidative stress. Chem. Res. Toxicol., 33 (8) (2020), pp. 2022-2042,
CrossRef
Google scholar
|
C. Ma, Q. Chen, J. Li, B. Li, W. Liang, L. Su, H. Shi. Distribution and translocation of micro-and nanoplastics in fish. Crit. Rev. Toxicol., 51 (9) (2021), pp. 740-753,
CrossRef
Google scholar
|
N. Nabi, I. Ahmad, A. Amin, M.A. Rather, I. Ahmed, Y.A. Hajam, S. Khursheed, M.M. Malik, A. Abubakr. Understanding the sources, fate and effects of microplastics in aquatic environments with a focus on risk profiling in aquaculture systems. Rev. Aquacult., 16 (4) (2024), pp. 1947-1980,
CrossRef
Google scholar
|
S. Picchietti, N. Nunez-Ortiz, V. Stocchi, E. Randelli, F. Buonocore, L. Guerra, G. Scapigliati. Evolution of lymphocytes. Immunoglobulin T of the teleost sea bass (Dicentrarchus labrax): quantitation of gene expressing and immunoreactive cells. Fish Shellfish Immun., 63 (2017), pp. 40-52,
CrossRef
Google scholar
|
E. Pulvirenti, M. Ferrante, N. Barbera, C. Favara, E. Aquilia, M. Palella, A. Cristaldi, G.O. Conti, M. Fiore. Effects of nano and microplastics on the inflammatory process: in vitro and in vivo studies systematic review. Front. Biosci.-Landmark, 27 (10) (2022), p. 287, 10.31083/j.fbl2710287
|
M. Pyl, A. Taylor, F. Oberhansli, P. Swarzenski, M. Besson, B. Danis, M. Metian. Evidence of microplastic-mediated transfer of PCB-153 to sea urchin tissues using radiotracers. Mar. Pollut. Bull., 185B (2022), Article 114322,
CrossRef
Google scholar
|
U. Samarajeewa. Emerging challenges in maintaining marine food‐fish availability and food safety. Compr. Rev. Food Sci. F., 22 (6) (2023), pp. 4734-4757,
CrossRef
Google scholar
|
A. Sanchez, P. Rodriguez-Viso, A. Domene, H. Orozco, D. Velez, V. Devesa. Dietary microplastics: occurrence, exposure and health implications. Environ. Res., 212A (2022), Article 113150,
CrossRef
Google scholar
|
J. Shi, D. Wu, Y. Su, B. Xie. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate. Environ. Sci. Nano, 7 (11) (2020), pp. 3536-3546,
CrossRef
Google scholar
|
A.D. Steinman, J. Scott, L. Green, C. Partridge, M. Oudsema, M. Hassett, E. Kindervater, R.R. Rediske. Persistent organic pollutants, metals, and the bacterial community composition associated with microplastics in Muskegon Lake (MI). J. Great Lakes Res., 46 (2020), pp. 1444-1458,
CrossRef
Google scholar
|
M. Stosik, B. Tokarz-Deptuła, W. Deptuła. Immunity of the intestinal mucosa in teleost fish. Fish Shellfish Immun., 133 (2023), Article 108572,
CrossRef
Google scholar
|
U. Subaramaniyam, R.S. Allimuthu, S. Vappu, D. Ramalingam, R. Balan, B. Paital, N. Panda, P.K. Rath, N. Ramalingam, D.K. Sahoo. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol., 14 (2023), Article 1217666,
CrossRef
Google scholar
|
A.G. Tacon, R.T. Coelho, J. Levy, T.M. Machado, C.R. Neiva, D. Lemos. Annotated bibliography of selected papers dealing with the health benefits and risks of fish and seafood consumption. Rev. Fish. Sci. Aquac., 32 (2) (2023), pp. 211-305,
CrossRef
Google scholar
|
J. Teng, J. Zhao, X. Zhu, E. Shan, Y. Zhao, C. Sun, W. Sun, Q. Wang. The physiological response of the clam Ruditapes philippinarum and scallop Chlamys farreri to varied concentrations of microplastics exposure. Mar. Pollut. Bull., 200 (2024), Article 116151,
CrossRef
Google scholar
|
S. Varshney, M.M. Hegstad-Pettersen, P. Siriyappagouder, P.A. Olsvik. Enhanced neurotoxic effect of PCB-153 when co-exposed with polystyrene nanoplastics in zebrafish larvae. Chemosphere, 355 (2024), Article 141783,
CrossRef
Google scholar
|
J. Wang, X. Li, P. Li, L. Li, L. Zhao, S. Ru, D. Zhang. Porous microplastics enhance polychlorinated biphenyls-induced thyroid disruption in juvenile Japanese flounder (Paralichthys olivaceus). Mar. Pollut. Bull., 174 (2022), Article 113289,
CrossRef
Google scholar
|
C. Xiao, Y. Zhang, F. Zhu. Immunotoxicity of polychlorinated biphenyls (PCBs) to the marine crustacean species, Scylla Paramamosain. Environ. Pollut., 291 (2021), Article 118229,
CrossRef
Google scholar
|
Z. Yu, L. Zhang, Q. Huang, S. Dong, X. Wang, C. Yan. Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). Sci. Total Environ., 15 (843) (2022), Article 156917,
CrossRef
Google scholar
|
Y. Zeng, B. Deng, Z. Kang, P. Araujo, S.A. Mjos, R. Liu, J. Lin, T. Yang, Y. Qu. Tissue accumulation of polystyrene microplastics causes oxidative stress, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei. Ecotol. Environ. Safe., 256 (2023), Article 114871,
CrossRef
Google scholar
|
Q. Zhang, Y. He, R. Cheng, Q. Li, Z. Qian, X. Lin. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ. Sci. Pollut. Res., 29 (27) (2022), pp. 40415-40448,
CrossRef
Google scholar
|
N. Zitouni, N. Bousserrhine, O. Missawi, I. Boughattas, N. Chèvre, R. Santos, S. Belbekhouche, V. Alphonse, F. Tisserand, L. Balmassiere, S.P.D. Santos, M. Mokni, H. Guerbej, M. Banni. Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. J. Hazard. Mater., 403 (2021), Article 124055,
CrossRef
Google scholar
|
/
〈 |
|
〉 |