Toxic impacts of polystyrene nanoplastics and PCB77 in blunt snout bream: Evidence from tissue morphology, oxidative stress and intestinal microbiome
Fang Chen , Zhen Li , Zeliang Su , Hongping Liao , Dandan Gao , Linyong Zhi , Chunmiao Kong , Qingzhi Zheng , Jun Wang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102005
Toxic impacts of polystyrene nanoplastics and PCB77 in blunt snout bream: Evidence from tissue morphology, oxidative stress and intestinal microbiome
Polystyrene nanoplastics (PS-NPs) and 3,3′,4,4′-tetrachlorobiphenyl (PCB77) are common pollutants in freshwater aquatic environments. To investigate the separate and combined toxicity of these two pollutants on the freshwater blunt snout bream (Megalobrama amblycephala), 270 juveniles were randomly assigned to six exposure treatments: the control group, CT (free of PS-NPs and PCB77), three single exposure groups, PS-L (0.2 mg/L PS-NPs), PS-H (2 mg/L PS-NPs), PCB (0.01 mg/L PCB77), and two combined exposure groups, PP-L (0.2 mg/L PS-NPs + 0.01 mg/L PCB77) and PP-H (2 mg/L PS-NPs + 0.01 mg/L PCB77). After a seven-day exposure, the tissue histopathology, antioxidant capacity, inflammatory response, and gut microbiome composition of fish were analyzed. The results showed that tissue fluorescence intensity of PS-NPs increases as the exposure levels of PS-NPs increase, and the combined exposure groups exhibited higher fluorescence intensity compared to their single PS-NPs exposure groups. Histopathological analysis showed that the exposure groups exhibited varying degrees of damage to the intestinal tissue compared to the control group, with more severe damage observed in the combined exposure groups. Additionally, liver damage was evident in the PS-H, PP-L and PP-H groups. Furthermore, the highest catalase (CAT) activities and malondialdehyde (MDA) contents were found in the intestine and liver of fish in the PP-L and PP-H groups. The mRNA levels of inflammatory factors (il, il-1β, il-8, il-6, il-10, and tnf-α) were up-regulated in the PS-H, PP-L and PP-H groups compared to those of the CT group. In addition, remarkable alternations in the intestinal microbiome compositions were observed among the groups: the abundance of Verrucomicrobiome and Planctomycetota increased in all exposed groups compared to that of the control group, while the abundance of Actinobacteriota was significantly reduced in the exposure groups. Functional prediction of microbiota indicated that the amino acid and carbohydrate metabolism, as well as intestinal structure, were impaired in the PS-NPs and PCB77 exposure groups. The results suggested that the toxicity of PS-NPs on M. amblycephala including tissue injury, oxidative stress, and disturbance of intestinal microbiota, depends not only on concentration but also increases when co-exposed to PCB77. This finding raises concerns about the ecological safety in freshwater aquatic environments.
Nanoplastics / PCB77 / Megalobrama amblycephala / Oxidative stress / Intestinal microbiome
| [1] |
B.D. Abera, M.A. Adimas. Health benefits and health risks of contaminated fish consumption: current research outputs, research approaches, and perspectives. Heliyon, 10 (13) (2024), Article e33905, |
| [2] |
A. Arocho, B. Chen, M. Ladanyi, Q. Pan. Validation of the 2−ΔΔCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn. Mol. Pathol., 15 (1) (2006), pp. 56-61, |
| [3] |
Y. Cao, L. Bi, Q. Chen, Y. Liu, H. Zhao, L. Jin, R. Peng. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: a review. Environ. Pollut., 352 (2024), Article 124103, |
| [4] |
M. Chen, X. Bao, Y. Yue, K. Yang, H. Liu, Y. Yang, H. Yu, Y. Yu, N. Duan. Combined effects of cadmium and nanoplastics on oxidative stress, histopathology, and intestinal microbiota in largemouth bass (Micropterus salmoides). Aquaculture, 569 (2023), Article 739363, |
| [5] |
H. Cheng, Y. Dai, X. Ruan, X. Duan, C. Zhang, L. Li, F. Huang, J. Shan, K. Liang, X. Jia, Q. Wang, H. Zhao. Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax quadricarinatus) based on high-throughput sequencing. Ecotox. Environ Safe., 245 (2022), Article 114114, |
| [6] |
J. Ding, Y. Huang, S. Liu, S. Zhang, H. Zou, Z. Wang, W. Zhu, J. Geng. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?. J. Hazard. Mater., 396 (2020), Article 122693, |
| [7] |
E. Frantsuzova, A. Bogun, L. Shishkina, A. Vetrova, I. Solyanikova, Y. Delegan. Insights into the potential role of Gordoni alkanivorans strains in biotechnologies. Processes, 11 (11) (2023), p. 3184, |
| [8] |
L. Gao, B. Fang, C. Lu, K. Hong, X. Huang, T. She, M. Xiao, W. Li. Unraveling the genomic diversity and ecological potential of the genus Demequina: insights from comparative analysis of different saline niche strains. Front. Mar. Sci., 10 (2023), Article 1244849, |
| [9] |
V. Godoy, G. Blazquez, M. Calero, L. Quesada, M.A. Martın-Lara. The potential of microplastics as carriers of metals. Environ. Pollut., 255 (3) (2019), Article 113363, |
| [10] |
M.C. Guerrera, M. Aragona, C. Porcino, F. Fazio, R. Laurà, M. Levanti, G. Montalbano, G. Germanà, F. Abbate, A. Germanà. Micro and nano plastics distribution in fish as model organisms: histopathology, blood response and bioaccumulation in different organs. Appl. Sci., 11 (13) (2021), p. 5768, |
| [11] |
T. Habumugisha, Z. Zhang, C. Uwizewe, C. Yan, J.C. Ndayishimiye, A. Rehman, X. Zhang. Toxicological review of micro-and nano-plastics in aquatic environments: risks to ecosystems, food web dynamics and human health. Ecotox. Environ. Safe., 278 (2024), Article 116426, |
| [12] |
T.B. Henry. Ecotoxicology of polychlorinated biphenyls in fish—a critical review. Crit. Rev. Toxicol., 45 (8) (2015), pp. 643-661, |
| [13] |
E. Hoyo-Alvarez, P. Arechavala-Lopez, M. Jiménez-García, A. Solomando, C. Alomar, A. Sureda, D. Moranta, S. Deudero. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. Aquat. Toxicol., 242 (2022), Article 106048, |
| [14] |
Y. Hu, F. Nie, M. Zhang, Q. Song, W. Wei, G. Lv, Y. Wei, D. Kang, Z. Chen, H. Lin, J. Chen. Developmental toxicity and mechanism of polychlorinated biphenyls 126 and nano-polystyrene combined exposure to zebrafish larvae. Ecotox. Environ. Safe., 278 (2024), Article 116419, |
| [15] |
Y. Huang, G. Jiang, K. Abasubong, C. Wang, L. Zhang, Y. Dai, X. Zheng, X. Cao, C. He, X. Wang, K. Xiao, X. Li, Y. Wu, W. Liu. High lipid and high carbohydrate diets affect muscle growth of blunt snout bream (Megalobrama amblycephala) through different signaling pathways. Aquaculture, 548 (2022), Article 737495, |
| [16] |
J. Huang, B. Wen, L. Meng, X. Li, M. Wang, J. Gao, Z. Chen. Integrated response of growth, antioxidant defense and isotopic composition to microplastics in juvenile guppy (Poecilia reticulata). J. Hazard. Mater., 399 (2020), Article 123044, |
| [17] |
T. Islam, H. Cheng. Existence and fate of microplastics in terrestrial environment: a global fretfulness and abatement strategies. Sci. Total Environ., 953 (2024), Article 176163, |
| [18] |
Y. Jin, J. Xia, Z. Pan, J. Yang, W. Wang, Z. Fu. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut., 235 (2018), pp. 322-329, |
| [19] |
V.C. Kalia, C. Gong, R. Shanmugam, H. Lin, L. Zhang, J.K. Lee. The emerging biotherapeutic agent: Akkermansia. Indian J. Microbiol., 62 (1) (2022), pp. 1-10, |
| [20] |
V.S. Kavagutti, M.C. Chiriac, R. Ghai, M.M. Salcher, M. Haber. Isolation of phages infecting the abundant freshwater Actinobacteriota order ‘Ca. Nanopelagicales’. ISME J., 17 (6) (2023), pp. 943-946, |
| [21] |
J.H. Kim, Y. Yu, J.H. Choi. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: a review. J. Hazard. Mater., 413 (2021), Article 125423, |
| [22] |
C. Kong, T. Pan, X. Chen, M. Junaid, H. Liao, D. Gao, Q. Wang, W. Liu, X. Wang, J. Wang. Exposure to polystyrene nanoplastics and PCB77 induced oxidative stress, histopathological damage and intestinal microbiome disruption in white hard clam Meretrix lyrata. Sci. Total Environ., 905 (2023), Article 167125, |
| [23] |
D. Lauritano, F. Mastrangelo, C. D’Ovidio, G. Ronconi, A. Caraffa, C.E. Gallenga, I. Frydas, S.K. Kritas, M. Trimarchi, F. Carinci, P. Conti. Activation of mast cells by neuropeptides: the role of pro-inflammatory and anti-inflammatory cytokines. Int. J. Mol. Sci., 24 (5) (2023), p. 4811, |
| [24] |
D. Li, Y. Huang, S. Gao, L. Chen, M. Zhang, Z. Du. Sex-specific alterations of lipid metabolism in zebrafish exposed to polychlorinated biphenyls. Chemosphere, 221 (2019), pp. 768-777, |
| [25] |
Y. Li, S. Liu, Q. Wang, Y. Zhang, X. Chen, L. Yan, M. Junaid, J. Wang. Polystyrene nanoplastics aggravated ecotoxicological effects of polychlorinated biphenyls in on zebraffsh (danio rerio) embryos. Geosci. Front., 13 (3) (2022), Article 101376, |
| [26] |
W. Lin, Z. Wu, Y. Wang, R. Jiang, G. Ouyang. Size-dependent vector effect of microplastics on the bioaccumulation of polychlorinated biphenyls in tilapia: a tissue-specific study. Sci. Total Environ., 915 (2024), Article 170047, |
| [27] |
M. Liu, S. Fan, Z. Rong, H. Qiu, S. Yan, H. Ni, Z. Dong. Exposure to polychlorinated biphenyls (PCBs) affects the histology and antioxidant capability of the clam Cyclina sinensis. Front. Mar. Sci., 10 (2023), Article 1076870, |
| [28] |
H. Liu, F. Nie, H. Lin, Y. Ma, X. Ju, J. Chen, R. Gooneratne. Developmental toxicity, oxidative stress, and related gene expression induced by dioxin‐like PCB 126 in zebrafish (Danio rerio). Environ. Toxicol., 31 (3) (2016), pp. 295-303, |
| [29] |
J. Liu, Y. Tan, E. Song, Y. Song. A critical review of polychlorinated biphenyls metabolism, metabolites, and their correlation with oxidative stress. Chem. Res. Toxicol., 33 (8) (2020), pp. 2022-2042, |
| [30] |
C. Ma, Q. Chen, J. Li, B. Li, W. Liang, L. Su, H. Shi. Distribution and translocation of micro-and nanoplastics in fish. Crit. Rev. Toxicol., 51 (9) (2021), pp. 740-753, |
| [31] |
N. Nabi, I. Ahmad, A. Amin, M.A. Rather, I. Ahmed, Y.A. Hajam, S. Khursheed, M.M. Malik, A. Abubakr. Understanding the sources, fate and effects of microplastics in aquatic environments with a focus on risk profiling in aquaculture systems. Rev. Aquacult., 16 (4) (2024), pp. 1947-1980, |
| [32] |
S. Picchietti, N. Nunez-Ortiz, V. Stocchi, E. Randelli, F. Buonocore, L. Guerra, G. Scapigliati. Evolution of lymphocytes. Immunoglobulin T of the teleost sea bass (Dicentrarchus labrax): quantitation of gene expressing and immunoreactive cells. Fish Shellfish Immun., 63 (2017), pp. 40-52, |
| [33] |
E. Pulvirenti, M. Ferrante, N. Barbera, C. Favara, E. Aquilia, M. Palella, A. Cristaldi, G.O. Conti, M. Fiore. Effects of nano and microplastics on the inflammatory process: in vitro and in vivo studies systematic review. Front. Biosci.-Landmark, 27 (10) (2022), p. 287, 10.31083/j.fbl2710287 |
| [34] |
M. Pyl, A. Taylor, F. Oberhansli, P. Swarzenski, M. Besson, B. Danis, M. Metian. Evidence of microplastic-mediated transfer of PCB-153 to sea urchin tissues using radiotracers. Mar. Pollut. Bull., 185B (2022), Article 114322, |
| [35] |
U. Samarajeewa. Emerging challenges in maintaining marine food‐fish availability and food safety. Compr. Rev. Food Sci. F., 22 (6) (2023), pp. 4734-4757, |
| [36] |
A. Sanchez, P. Rodriguez-Viso, A. Domene, H. Orozco, D. Velez, V. Devesa. Dietary microplastics: occurrence, exposure and health implications. Environ. Res., 212A (2022), Article 113150, |
| [37] |
J. Shi, D. Wu, Y. Su, B. Xie. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate. Environ. Sci. Nano, 7 (11) (2020), pp. 3536-3546, |
| [38] |
A.D. Steinman, J. Scott, L. Green, C. Partridge, M. Oudsema, M. Hassett, E. Kindervater, R.R. Rediske. Persistent organic pollutants, metals, and the bacterial community composition associated with microplastics in Muskegon Lake (MI). J. Great Lakes Res., 46 (2020), pp. 1444-1458, |
| [39] |
M. Stosik, B. Tokarz-Deptuła, W. Deptuła. Immunity of the intestinal mucosa in teleost fish. Fish Shellfish Immun., 133 (2023), Article 108572, |
| [40] |
U. Subaramaniyam, R.S. Allimuthu, S. Vappu, D. Ramalingam, R. Balan, B. Paital, N. Panda, P.K. Rath, N. Ramalingam, D.K. Sahoo. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol., 14 (2023), Article 1217666, |
| [41] |
A.G. Tacon, R.T. Coelho, J. Levy, T.M. Machado, C.R. Neiva, D. Lemos. Annotated bibliography of selected papers dealing with the health benefits and risks of fish and seafood consumption. Rev. Fish. Sci. Aquac., 32 (2) (2023), pp. 211-305, |
| [42] |
J. Teng, J. Zhao, X. Zhu, E. Shan, Y. Zhao, C. Sun, W. Sun, Q. Wang. The physiological response of the clam Ruditapes philippinarum and scallop Chlamys farreri to varied concentrations of microplastics exposure. Mar. Pollut. Bull., 200 (2024), Article 116151, |
| [43] |
S. Varshney, M.M. Hegstad-Pettersen, P. Siriyappagouder, P.A. Olsvik. Enhanced neurotoxic effect of PCB-153 when co-exposed with polystyrene nanoplastics in zebrafish larvae. Chemosphere, 355 (2024), Article 141783, |
| [44] |
J. Wang, X. Li, P. Li, L. Li, L. Zhao, S. Ru, D. Zhang. Porous microplastics enhance polychlorinated biphenyls-induced thyroid disruption in juvenile Japanese flounder (Paralichthys olivaceus). Mar. Pollut. Bull., 174 (2022), Article 113289, |
| [45] |
C. Xiao, Y. Zhang, F. Zhu. Immunotoxicity of polychlorinated biphenyls (PCBs) to the marine crustacean species, Scylla Paramamosain. Environ. Pollut., 291 (2021), Article 118229, |
| [46] |
Z. Yu, L. Zhang, Q. Huang, S. Dong, X. Wang, C. Yan. Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). Sci. Total Environ., 15 (843) (2022), Article 156917, |
| [47] |
Y. Zeng, B. Deng, Z. Kang, P. Araujo, S.A. Mjos, R. Liu, J. Lin, T. Yang, Y. Qu. Tissue accumulation of polystyrene microplastics causes oxidative stress, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei. Ecotol. Environ. Safe., 256 (2023), Article 114871, |
| [48] |
Q. Zhang, Y. He, R. Cheng, Q. Li, Z. Qian, X. Lin. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ. Sci. Pollut. Res., 29 (27) (2022), pp. 40415-40448, |
| [49] |
N. Zitouni, N. Bousserrhine, O. Missawi, I. Boughattas, N. Chèvre, R. Santos, S. Belbekhouche, V. Alphonse, F. Tisserand, L. Balmassiere, S.P.D. Santos, M. Mokni, H. Guerbej, M. Banni. Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. J. Hazard. Mater., 403 (2021), Article 124055, |
/
| 〈 |
|
〉 |