Toxic impacts of polystyrene nanoplastics and PCB77 in blunt snout bream: Evidence from tissue morphology, oxidative stress and intestinal microbiome

Fang Chen, Zhen Li, Zeliang Su, Hongping Liao, Dandan Gao, Linyong Zhi, Chunmiao Kong, Qingzhi Zheng, Jun Wang

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102005.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102005. DOI: 10.1016/j.gsf.2025.102005

Toxic impacts of polystyrene nanoplastics and PCB77 in blunt snout bream: Evidence from tissue morphology, oxidative stress and intestinal microbiome

Author information +
History +

Abstract

Polystyrene nanoplastics (PS-NPs) and 3,3′,4,4′-tetrachlorobiphenyl (PCB77) are common pollutants in freshwater aquatic environments. To investigate the separate and combined toxicity of these two pollutants on the freshwater blunt snout bream (Megalobrama amblycephala), 270 juveniles were randomly assigned to six exposure treatments: the control group, CT (free of PS-NPs and PCB77), three single exposure groups, PS-L (0.2 mg/L PS-NPs), PS-H (2 mg/L PS-NPs), PCB (0.01 mg/L PCB77), and two combined exposure groups, PP-L (0.2 mg/L PS-NPs + 0.01 mg/L PCB77) and PP-H (2 mg/L PS-NPs + 0.01 mg/L PCB77). After a seven-day exposure, the tissue histopathology, antioxidant capacity, inflammatory response, and gut microbiome composition of fish were analyzed. The results showed that tissue fluorescence intensity of PS-NPs increases as the exposure levels of PS-NPs increase, and the combined exposure groups exhibited higher fluorescence intensity compared to their single PS-NPs exposure groups. Histopathological analysis showed that the exposure groups exhibited varying degrees of damage to the intestinal tissue compared to the control group, with more severe damage observed in the combined exposure groups. Additionally, liver damage was evident in the PS-H, PP-L and PP-H groups. Furthermore, the highest catalase (CAT) activities and malondialdehyde (MDA) contents were found in the intestine and liver of fish in the PP-L and PP-H groups. The mRNA levels of inflammatory factors (il, il-1β, il-8, il-6, il-10, and tnf-α) were up-regulated in the PS-H, PP-L and PP-H groups compared to those of the CT group. In addition, remarkable alternations in the intestinal microbiome compositions were observed among the groups: the abundance of Verrucomicrobiome and Planctomycetota increased in all exposed groups compared to that of the control group, while the abundance of Actinobacteriota was significantly reduced in the exposure groups. Functional prediction of microbiota indicated that the amino acid and carbohydrate metabolism, as well as intestinal structure, were impaired in the PS-NPs and PCB77 exposure groups. The results suggested that the toxicity of PS-NPs on M. amblycephala including tissue injury, oxidative stress, and disturbance of intestinal microbiota, depends not only on concentration but also increases when co-exposed to PCB77. This finding raises concerns about the ecological safety in freshwater aquatic environments.

Keywords

Nanoplastics / PCB77 / Megalobrama amblycephala / Oxidative stress / Intestinal microbiome

Cite this article

Download citation ▾
Fang Chen, Zhen Li, Zeliang Su, Hongping Liao, Dandan Gao, Linyong Zhi, Chunmiao Kong, Qingzhi Zheng, Jun Wang. Toxic impacts of polystyrene nanoplastics and PCB77 in blunt snout bream: Evidence from tissue morphology, oxidative stress and intestinal microbiome. Geoscience Frontiers, 2025, 16(2): 102005 https://doi.org/10.1016/j.gsf.2025.102005

CRediT authorship contribution statement

Fang Chen: Writing – original draft, Methodology, Investigation, Formal analysis, Conceptualization. Zhen Li: Writing – review & editing, Formal analysis. Zeliang Su: Writing – review & editing, Formal analysis. Hongping Liao: Resources, Data curation. Dandan Gao: Resources, Data curation. Linyong Zhi: Resources. Chunmiao Kong: Resources. Qingzhi Zheng: Resources. Jun Wang: Writing – review & editing, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (42077364), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2018. We very much thank Jeffrey Wragg from the University of Charleston, who gave us much valuable advice on the writing and editing of this manuscript. We appreciate the provision of SCAU Wushan Campus Teaching & Research Base.

References

B.D. Abera, M.A. Adimas. Health benefits and health risks of contaminated fish consumption: current research outputs, research approaches, and perspectives. Heliyon, 10 (13) (2024), Article e33905,
CrossRef Google scholar
A. Arocho, B. Chen, M. Ladanyi, Q. Pan. Validation of the 2−ΔΔCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn. Mol. Pathol., 15 (1) (2006), pp. 56-61,
CrossRef Google scholar
Y. Cao, L. Bi, Q. Chen, Y. Liu, H. Zhao, L. Jin, R. Peng. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: a review. Environ. Pollut., 352 (2024), Article 124103,
CrossRef Google scholar
M. Chen, X. Bao, Y. Yue, K. Yang, H. Liu, Y. Yang, H. Yu, Y. Yu, N. Duan. Combined effects of cadmium and nanoplastics on oxidative stress, histopathology, and intestinal microbiota in largemouth bass (Micropterus salmoides). Aquaculture, 569 (2023), Article 739363,
CrossRef Google scholar
H. Cheng, Y. Dai, X. Ruan, X. Duan, C. Zhang, L. Li, F. Huang, J. Shan, K. Liang, X. Jia, Q. Wang, H. Zhao. Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax quadricarinatus) based on high-throughput sequencing. Ecotox. Environ Safe., 245 (2022), Article 114114,
CrossRef Google scholar
J. Ding, Y. Huang, S. Liu, S. Zhang, H. Zou, Z. Wang, W. Zhu, J. Geng. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?. J. Hazard. Mater., 396 (2020), Article 122693,
CrossRef Google scholar
E. Frantsuzova, A. Bogun, L. Shishkina, A. Vetrova, I. Solyanikova, Y. Delegan. Insights into the potential role of Gordoni alkanivorans strains in biotechnologies. Processes, 11 (11) (2023), p. 3184,
CrossRef Google scholar
L. Gao, B. Fang, C. Lu, K. Hong, X. Huang, T. She, M. Xiao, W. Li. Unraveling the genomic diversity and ecological potential of the genus Demequina: insights from comparative analysis of different saline niche strains. Front. Mar. Sci., 10 (2023), Article 1244849,
CrossRef Google scholar
V. Godoy, G. Blazquez, M. Calero, L. Quesada, M.A. Martın-Lara. The potential of microplastics as carriers of metals. Environ. Pollut., 255 (3) (2019), Article 113363,
CrossRef Google scholar
M.C. Guerrera, M. Aragona, C. Porcino, F. Fazio, R. Laurà, M. Levanti, G. Montalbano, G. Germanà, F. Abbate, A. Germanà. Micro and nano plastics distribution in fish as model organisms: histopathology, blood response and bioaccumulation in different organs. Appl. Sci., 11 (13) (2021), p. 5768,
CrossRef Google scholar
T. Habumugisha, Z. Zhang, C. Uwizewe, C. Yan, J.C. Ndayishimiye, A. Rehman, X. Zhang. Toxicological review of micro-and nano-plastics in aquatic environments: risks to ecosystems, food web dynamics and human health. Ecotox. Environ. Safe., 278 (2024), Article 116426,
CrossRef Google scholar
T.B. Henry. Ecotoxicology of polychlorinated biphenyls in fish—a critical review. Crit. Rev. Toxicol., 45 (8) (2015), pp. 643-661,
CrossRef Google scholar
E. Hoyo-Alvarez, P. Arechavala-Lopez, M. Jiménez-García, A. Solomando, C. Alomar, A. Sureda, D. Moranta, S. Deudero. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. Aquat. Toxicol., 242 (2022), Article 106048,
CrossRef Google scholar
Y. Hu, F. Nie, M. Zhang, Q. Song, W. Wei, G. Lv, Y. Wei, D. Kang, Z. Chen, H. Lin, J. Chen. Developmental toxicity and mechanism of polychlorinated biphenyls 126 and nano-polystyrene combined exposure to zebrafish larvae. Ecotox. Environ. Safe., 278 (2024), Article 116419,
CrossRef Google scholar
Y. Huang, G. Jiang, K. Abasubong, C. Wang, L. Zhang, Y. Dai, X. Zheng, X. Cao, C. He, X. Wang, K. Xiao, X. Li, Y. Wu, W. Liu. High lipid and high carbohydrate diets affect muscle growth of blunt snout bream (Megalobrama amblycephala) through different signaling pathways. Aquaculture, 548 (2022), Article 737495,
CrossRef Google scholar
J. Huang, B. Wen, L. Meng, X. Li, M. Wang, J. Gao, Z. Chen. Integrated response of growth, antioxidant defense and isotopic composition to microplastics in juvenile guppy (Poecilia reticulata). J. Hazard. Mater., 399 (2020), Article 123044,
CrossRef Google scholar
T. Islam, H. Cheng. Existence and fate of microplastics in terrestrial environment: a global fretfulness and abatement strategies. Sci. Total Environ., 953 (2024), Article 176163,
CrossRef Google scholar
Y. Jin, J. Xia, Z. Pan, J. Yang, W. Wang, Z. Fu. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut., 235 (2018), pp. 322-329,
CrossRef Google scholar
V.C. Kalia, C. Gong, R. Shanmugam, H. Lin, L. Zhang, J.K. Lee. The emerging biotherapeutic agent: Akkermansia. Indian J. Microbiol., 62 (1) (2022), pp. 1-10,
CrossRef Google scholar
V.S. Kavagutti, M.C. Chiriac, R. Ghai, M.M. Salcher, M. Haber. Isolation of phages infecting the abundant freshwater Actinobacteriota order ‘Ca. Nanopelagicales’. ISME J., 17 (6) (2023), pp. 943-946,
CrossRef Google scholar
J.H. Kim, Y. Yu, J.H. Choi. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: a review. J. Hazard. Mater., 413 (2021), Article 125423,
CrossRef Google scholar
C. Kong, T. Pan, X. Chen, M. Junaid, H. Liao, D. Gao, Q. Wang, W. Liu, X. Wang, J. Wang. Exposure to polystyrene nanoplastics and PCB77 induced oxidative stress, histopathological damage and intestinal microbiome disruption in white hard clam Meretrix lyrata. Sci. Total Environ., 905 (2023), Article 167125,
CrossRef Google scholar
D. Lauritano, F. Mastrangelo, C. D’Ovidio, G. Ronconi, A. Caraffa, C.E. Gallenga, I. Frydas, S.K. Kritas, M. Trimarchi, F. Carinci, P. Conti. Activation of mast cells by neuropeptides: the role of pro-inflammatory and anti-inflammatory cytokines. Int. J. Mol. Sci., 24 (5) (2023), p. 4811,
CrossRef Google scholar
D. Li, Y. Huang, S. Gao, L. Chen, M. Zhang, Z. Du. Sex-specific alterations of lipid metabolism in zebrafish exposed to polychlorinated biphenyls. Chemosphere, 221 (2019), pp. 768-777,
CrossRef Google scholar
Y. Li, S. Liu, Q. Wang, Y. Zhang, X. Chen, L. Yan, M. Junaid, J. Wang. Polystyrene nanoplastics aggravated ecotoxicological effects of polychlorinated biphenyls in on zebraffsh (danio rerio) embryos. Geosci. Front., 13 (3) (2022), Article 101376,
CrossRef Google scholar
W. Lin, Z. Wu, Y. Wang, R. Jiang, G. Ouyang. Size-dependent vector effect of microplastics on the bioaccumulation of polychlorinated biphenyls in tilapia: a tissue-specific study. Sci. Total Environ., 915 (2024), Article 170047,
CrossRef Google scholar
M. Liu, S. Fan, Z. Rong, H. Qiu, S. Yan, H. Ni, Z. Dong. Exposure to polychlorinated biphenyls (PCBs) affects the histology and antioxidant capability of the clam Cyclina sinensis. Front. Mar. Sci., 10 (2023), Article 1076870,
CrossRef Google scholar
H. Liu, F. Nie, H. Lin, Y. Ma, X. Ju, J. Chen, R. Gooneratne. Developmental toxicity, oxidative stress, and related gene expression induced by dioxin‐like PCB 126 in zebrafish (Danio rerio). Environ. Toxicol., 31 (3) (2016), pp. 295-303,
CrossRef Google scholar
J. Liu, Y. Tan, E. Song, Y. Song. A critical review of polychlorinated biphenyls metabolism, metabolites, and their correlation with oxidative stress. Chem. Res. Toxicol., 33 (8) (2020), pp. 2022-2042,
CrossRef Google scholar
C. Ma, Q. Chen, J. Li, B. Li, W. Liang, L. Su, H. Shi. Distribution and translocation of micro-and nanoplastics in fish. Crit. Rev. Toxicol., 51 (9) (2021), pp. 740-753,
CrossRef Google scholar
N. Nabi, I. Ahmad, A. Amin, M.A. Rather, I. Ahmed, Y.A. Hajam, S. Khursheed, M.M. Malik, A. Abubakr. Understanding the sources, fate and effects of microplastics in aquatic environments with a focus on risk profiling in aquaculture systems. Rev. Aquacult., 16 (4) (2024), pp. 1947-1980,
CrossRef Google scholar
S. Picchietti, N. Nunez-Ortiz, V. Stocchi, E. Randelli, F. Buonocore, L. Guerra, G. Scapigliati. Evolution of lymphocytes. Immunoglobulin T of the teleost sea bass (Dicentrarchus labrax): quantitation of gene expressing and immunoreactive cells. Fish Shellfish Immun., 63 (2017), pp. 40-52,
CrossRef Google scholar
E. Pulvirenti, M. Ferrante, N. Barbera, C. Favara, E. Aquilia, M. Palella, A. Cristaldi, G.O. Conti, M. Fiore. Effects of nano and microplastics on the inflammatory process: in vitro and in vivo studies systematic review. Front. Biosci.-Landmark, 27 (10) (2022), p. 287, 10.31083/j.fbl2710287
M. Pyl, A. Taylor, F. Oberhansli, P. Swarzenski, M. Besson, B. Danis, M. Metian. Evidence of microplastic-mediated transfer of PCB-153 to sea urchin tissues using radiotracers. Mar. Pollut. Bull., 185B (2022), Article 114322,
CrossRef Google scholar
U. Samarajeewa. Emerging challenges in maintaining marine food‐fish availability and food safety. Compr. Rev. Food Sci. F., 22 (6) (2023), pp. 4734-4757,
CrossRef Google scholar
A. Sanchez, P. Rodriguez-Viso, A. Domene, H. Orozco, D. Velez, V. Devesa. Dietary microplastics: occurrence, exposure and health implications. Environ. Res., 212A (2022), Article 113150,
CrossRef Google scholar
J. Shi, D. Wu, Y. Su, B. Xie. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate. Environ. Sci. Nano, 7 (11) (2020), pp. 3536-3546,
CrossRef Google scholar
A.D. Steinman, J. Scott, L. Green, C. Partridge, M. Oudsema, M. Hassett, E. Kindervater, R.R. Rediske. Persistent organic pollutants, metals, and the bacterial community composition associated with microplastics in Muskegon Lake (MI). J. Great Lakes Res., 46 (2020), pp. 1444-1458,
CrossRef Google scholar
M. Stosik, B. Tokarz-Deptuła, W. Deptuła. Immunity of the intestinal mucosa in teleost fish. Fish Shellfish Immun., 133 (2023), Article 108572,
CrossRef Google scholar
U. Subaramaniyam, R.S. Allimuthu, S. Vappu, D. Ramalingam, R. Balan, B. Paital, N. Panda, P.K. Rath, N. Ramalingam, D.K. Sahoo. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol., 14 (2023), Article 1217666,
CrossRef Google scholar
A.G. Tacon, R.T. Coelho, J. Levy, T.M. Machado, C.R. Neiva, D. Lemos. Annotated bibliography of selected papers dealing with the health benefits and risks of fish and seafood consumption. Rev. Fish. Sci. Aquac., 32 (2) (2023), pp. 211-305,
CrossRef Google scholar
J. Teng, J. Zhao, X. Zhu, E. Shan, Y. Zhao, C. Sun, W. Sun, Q. Wang. The physiological response of the clam Ruditapes philippinarum and scallop Chlamys farreri to varied concentrations of microplastics exposure. Mar. Pollut. Bull., 200 (2024), Article 116151,
CrossRef Google scholar
S. Varshney, M.M. Hegstad-Pettersen, P. Siriyappagouder, P.A. Olsvik. Enhanced neurotoxic effect of PCB-153 when co-exposed with polystyrene nanoplastics in zebrafish larvae. Chemosphere, 355 (2024), Article 141783,
CrossRef Google scholar
J. Wang, X. Li, P. Li, L. Li, L. Zhao, S. Ru, D. Zhang. Porous microplastics enhance polychlorinated biphenyls-induced thyroid disruption in juvenile Japanese flounder (Paralichthys olivaceus). Mar. Pollut. Bull., 174 (2022), Article 113289,
CrossRef Google scholar
C. Xiao, Y. Zhang, F. Zhu. Immunotoxicity of polychlorinated biphenyls (PCBs) to the marine crustacean species, Scylla Paramamosain. Environ. Pollut., 291 (2021), Article 118229,
CrossRef Google scholar
Z. Yu, L. Zhang, Q. Huang, S. Dong, X. Wang, C. Yan. Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). Sci. Total Environ., 15 (843) (2022), Article 156917,
CrossRef Google scholar
Y. Zeng, B. Deng, Z. Kang, P. Araujo, S.A. Mjos, R. Liu, J. Lin, T. Yang, Y. Qu. Tissue accumulation of polystyrene microplastics causes oxidative stress, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei. Ecotol. Environ. Safe., 256 (2023), Article 114871,
CrossRef Google scholar
Q. Zhang, Y. He, R. Cheng, Q. Li, Z. Qian, X. Lin. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ. Sci. Pollut. Res., 29 (27) (2022), pp. 40415-40448,
CrossRef Google scholar
N. Zitouni, N. Bousserrhine, O. Missawi, I. Boughattas, N. Chèvre, R. Santos, S. Belbekhouche, V. Alphonse, F. Tisserand, L. Balmassiere, S.P.D. Santos, M. Mokni, H. Guerbej, M. Banni. Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. J. Hazard. Mater., 403 (2021), Article 124055,
CrossRef Google scholar

27

Accesses

0

Citations

Detail

Sections
Recommended

/