Unravelling the geochemical and geochronological diversities of the pre-collisional magmatism: Implications for the subduction dynamics in the Kohistan island arc and Karakorum block, Pakistan

Matee Ullah, Urs Klötzli, Christian Rentenberger, Jiří Sláma, Muhammad Younas, Muhammad Khubab, Mohammad Goudarzi, Tanveer Ahmad

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102003.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102003. DOI: 10.1016/j.gsf.2025.102003

Unravelling the geochemical and geochronological diversities of the pre-collisional magmatism: Implications for the subduction dynamics in the Kohistan island arc and Karakorum block, Pakistan

Author information +
History +

Abstract

The magmatic arcs in the north-west region of Pakistan comprises of numerous volcanic and plutonic bodies of different ages and compositions evolved during the subduction of the Neo- Tethys Ocean under the Eurasian supercontinent. This study focusses on the examination of the granitoids of the Kohistan batholith (a part of Kohistan-Ladakh Island Arc; KLIA) and the Khunjerab pluton, concentrating on their petrological traits, mineral chemistry, in-situ zircon U-Pb geochronology, and whole-rock major and trace element geochemistry. According to zircon U-Pb dating, the Kohistan batholith granitoid was emplaced around 91.7 ± 0.3 Ma, while zircons of the Khunjerab pluton yield ages of 106.4 ± 0.4 Ma and 106.4 ± 1.0 Ma. All the samples from both magmatic units have calcic to calc-alkaline (Na2O + K2O: 3.6–10.6 wt.% and SiO2: 60–73 wt.%), metaluminous to peraluminous properties (Aluminum Saturation Index (ASI): 0.9–1.2). Notably, Nb, Ta, and Ti show depletion, while large ion lithophile elements like Cs, Rb, and K have been enriched. Additionally, we find that SiO2 and P2O5 have a negative correlation while Rb and Th have a positive correlation, which confirm an I-type arc magmatism. Together with the published literature, TEM analysis, and thermal modelling, our zircon U-Pb results point to a period of continuous magmatic activity from the Late Jurassic to the Late Cretaceous (between 150 Ma and 91 Ma) in the Kohistan Island arc region while the Khunjerab pluton (part of Karakorum block/Eurasian plate) experienced widespread magmatism around 120 Ma to 106 Ma. With SiO2 concentrations ranging from 67.5–73.3 wt.% and 60–71.4 wt.% and relatively low alkali (Na2O + K2O) contents between 3.6–10.6 wt.% and 5.1–7.4 wt.% in the Kohistan batholith and Khunjerab pluton respectively, showing clear signs of acidity. The whole rock as well as the mineral geochemical analysis and the elevated water contents (8–10 wt.% and 3.1–3.5 wt.%) inferred from amphibole and biotite chemistry respectively, indicates that the Kohistan batholith was most likely formed through partial melting of a (hydrous) magma originating from a more or less altered metasomatized mantle wedge. Likewise, the Khunjerab pluton whole rock geochemistry also indicates its origin through partial melting of magma originating from an altered metasomatized mantle wedge. This study also shows that both units are not only different in terms of the nature of magmatism but also in terms of their ages i.e., continental arc magmatism occurred in the Khunjerab (Karakoram) block in the middle Cretaceous (106 Ma) while island arc magmatism occurred on the Kohistan side in the late Cretaceous (91 Ma). Further, this study also investigate why multi-grain U-Pb zircon dating is necessary for studying magmatic rocks by using transmission electron microscopy.

Keywords

Subduction zones / Geochemistry / U-Pb geochronology / Transmission electron microscopy / Thermal modelling

Cite this article

Download citation ▾
Matee Ullah, Urs Klötzli, Christian Rentenberger, Jiří Sláma, Muhammad Younas, Muhammad Khubab, Mohammad Goudarzi, Tanveer Ahmad. Unravelling the geochemical and geochronological diversities of the pre-collisional magmatism: Implications for the subduction dynamics in the Kohistan island arc and Karakorum block, Pakistan. Geoscience Frontiers, 2025, 16(2): 102003 https://doi.org/10.1016/j.gsf.2025.102003

CRediT authorship contribution statement

Matee Ullah: Writing – review & editing, Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Urs Klötzli: Writing – review & editing, Funding acquisition. Christian Rentenberger: Methodology, Investigation. Jiří Sláma: Methodology, Investigation. Muhammad Younas: Visualization. Muhammad Khubab: Visualization. Mohammad Goudarzi: Visualization. Tanveer Ahmad: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research work is published from the PhD work of the first author, funded by the Higher Education Commission of Pakistan under the Faculty Development Program for the Khushal Khan Khattak University, Karak, Pakistan with grant No. 386-388/PC/PAB/ KKKUK/21. Partial funds are provided by the University of Vienna, Austria. The Department of Lithospheric Research, and Physics of Nano Nanostructured Materials Laboratory, University of Vienna is also acknowledged for providing access to FIB-SEM, EPMA, TEM and different laboratories.

References

A.F.M. Abdel-Rahman. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol., 35 (2) (1994), pp. 525-541
G.H. Alférez, O.A. Esteban, B.L. Clausen, A.M.M. Ardila. Automated machine learning pipeline for geochemical analysis. Earth Sci. Inform., 15 (3) (2022), pp. 1683-1698
M. Ali, K.D. Zhao, C. Wang, H.U. Rehman, A. Hussain, M.A. Mahar, W. Lutfi. Geochemical and isotopic constraints on the origin and evolution of the Matum-Das tonalite and mafic enclaves from the Kohistan Batholith, Northern Pakistan. Lithos, 470-471 (1) (2024), Article 107535
C.J. Allegre, J.F. Minster. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett., 38 (1) (1978), pp. 1-25
T. Argles, G. Foster, A. Whittington, N. Harris, M. George. Isotope studies reveal a complete Himalayan section in the Nanga Parbat syntaxis. Geology, 31 (12) (2003), pp. 1109-1112
E.A. Belousova, W.L. Griffin, S.Y. O'Reilly, N.L. Fisher. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143 (2002), pp. 602-622
T. Bepler, K. Kelley, A.J. Noble, B. Berger. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun., 11 (1) (2020), p. 5208
P. Boehnke, E.B. Watson, D. Trail, T.M. Harrison, A.K. Schmitt. Zircon saturation re-revisited. Chem. Geol., 351 (2013), pp. 324-334
W.A. Bohrson, F.J. Spera, J.S. Heinonen, G.A. Brown, M.A. Scruggs, J.V. Adams, E. Suikkanen. Diagnosing open-system magmatic processes using the Magma Chamber Simulator (MCS): part I—major elements and phase equilibria. Contrib. Mineral. Petrol., 175 (2020), pp. 1-29
D. Bosch, C.J. Garrido, O. Bruguier, B. Dhuime, J.L. Bodinier, J.A. Padròn-Navarta, B. Galland. Building an island-arc crustal section: time constraints from a LA-ICP-MS zircon study. Earth Planet. Sci. Lett., 309 (3–4) (2011), pp. 268-279
M. Cao, K. Qin, G. Li, J. Li, J. Zhao, N.J. Evans, P. Hollings. Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet. Gondwana Res., 39 (2016), pp. 386-400
B.W. Chappell. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46 (3) (1999), pp. 535-551
D.J. Cherniak, E.B. Watson. Pb diffusion in zircon. Chem. Geol., 172 (1–2) (2001), pp. 5-24
M. Chiaradia. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Sci. Reports, 5 (1) (2015), p. 8115
B.H. Chilson-Parks, F.M. Calabozo, A.E. Saal, Z. Wang, S. Mallick, I.A. Petrinovic, F.A. Frey. The signature of metasomatized subcontinental lithospheric mantle in the basaltic magmatism of the Payenia volcanic province, Argentina. Geochem. Geophys. Geosys., 23 (1) (2022), Article e2021GC010071
M.B. Crawford, M.P. Searle. Field relationships and geochemistry of pre-collisional (India-Asia) granitoid magmatism in the central Karakoram, northern Pakistan. Tectonophysics, 206 (1–2) (1992), pp. 171-192
F. Debon, N. Ali Khan. Alkaline orogenic plutonism in the Karakorum batholith: the Upper Cretaceous Koz Sar complex (Karambar valley, N. Pakistan). Geodinamica Acta, 9 (4) (1996), pp. 145-160
Desio, A., 1964. On the geological ages of some granites of the Karakoram-Hindukush and Badakhashan (Central Asia). In 22nd International Geological Congress, Vol. 11, pp. 479-496.
D.M. Djimbi, C. Gautheron, J. Roques, L. Tassan-Got, C. Gerin, E. Simoni. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view. Geochim. Cosmochim. Acta, 167 (2015), pp. 162-176
R.C. Ewing, A. Meldrum, L. Wang, W.J. Weber, L.R. Corrales. Radiation effects in zircon. Rev. Mineral. Geochem., 53 (1) (2003), pp. 387-425
M.D. Foster. Interpretation of the composition of trioctahedral mica. U.S. Geological Survey Professional Paper, v. 354-B (1960), pp. pp. 11-48
B.R. Frost, C.G. Barnes, W.J. Collins, R.J. Arculus, D.J. Ellis, C.D. Frost. A geochemical classification for granitic rocks. J. Petrol., 42 (11) (2001), pp. 2033-2048
Gallagher, K., 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophy. Res. Solid Earth 117 (B2), e2021GC010071.
K. Gallagher, K. Charvin, S. Nielsen, M. Sambridge, J. Stephenson. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Marine Petrol. Geol., 26 (4) (2009), pp. 525-535
P. Gao, Y.F. Zheng, Z.F. Zhao. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos, 258 (2016), pp. 77-91
C. Gautheron, D.M. Djimbi, J. Roques, H. Balout, R.A. Ketcham, E. Simoni, L. Tassan-Got. A multi-method, multi-scale theoretical study of He and Ne diffusion in zircon. Geochim. Cosmochim. Acta, 268 (2020), pp. 348-367
Giambiagi, L., Mescua, J., Bechis, F., Tassara, A., Hoke, G., 2012. Thrust belts of the southern Central Andes: Along-strike variations in shortening, topography, crustal geometry, and denudation. Bulletin 124(7-8), 1339-1351.
T.L. Grove, J.M. Donnelly-Nolan, T. Housh. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, Northern California. Contrib. Mineral. Petrol., 127 (1997), pp. 205-223
T.L. Grove, L.T. Elkins-Tanton, S.W. Parman, N. Chatterjee, O. Müntener, G.A. Gaetani. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol., 145 (2003), pp. 515-533
Hartman, J., Franks, R., Gehrels, G., Hourigan, J., Wenig, P., 2017. Decoding Data Files from a Thermo Element TM ICP Mass Spectrometer, 15 pp. Manual available online at https://github.com/jhh67/extractdat.git [15.10. 2019].
G.A. Gualda, M.S. Ghiorso. MELTS _ E xcel: AM icrosoft E xcel‐based MELTS interface for research and teaching of magma properties and evolution. Geochem. Geophys. Geosys., 16 (1) (2015), pp. 315-324
G.A. Gualda, M.S. Ghiorso, R.V. Lemons, T.L. Carley. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol., 53 (5) (2012), pp. 875-890
C.J. Hawkesworth, M.J. Norry, J.C. Roddick, R. Vollmer. 143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle. Nature, 280 (5717) (1979), pp. 28-31
J.S. Heinonen, W.A. Bohrson, F.J. Spera, G.A. Brown, M.A. Scruggs, J.V. Adams. Diagnosing open-system magmatic processes using the Magma Chamber Simulator (MCS): part II—trace elements and isotopes. Contrib. Mineral. Petrol., 175 (2020), pp. 1-21
D.J. Henry, C.V. Guidotti, J.A. Thomson. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Mineralogist, 90 (2–3) (2005), pp. 316-328
J. Hermann. Allanite: thorium and light rare earth element carrier in subducted crust. Chem. Geol., 192 (3–4) (2002), pp. 289-306
S. Heuberger, U. Schaltegger, J.P. Burg, I.M. Villa, M. Frank, H. Dawood, A. Zanchi. Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: Evidence for subduction and continued convergence after India-Asia collision. Swiss J. Geosci., 100 (2007), pp. 85-107
P.R. Hildebrand, S.R. Noble, M.P. Searle, D.J. Waters, R.R. Parrish. Old origin for an active mountain range: Geology and geochronology of the eastern Hindu Kush, Pakistan. Geol. Soc. Am. Bull., 113 (5) (2001), pp. 625-639
M.M. Hirschmann, M.S. Ghiorso, F.A. Davis, S.M. Gordon, S. Mukherjee, T.L. Grove, C.B. Till. Library of Experimental Phase Relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data. Geochem. Geophys. Geosys., 9 (2008), p. 3
K. Honegger, V. Dietrich, W. Frank, A. Gansser, M. Thöni, V. Trommsdorff. Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth Planet. Sci. Lett., 60 (2) (1982), pp. 253-292
S. Hönig, R. Čopjaková, R. Škoda, M. Novák, D. Dolejš, J. Leichmann, M.V. Galiová. Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic. Am. Mineral., 99 (10) (2014), pp. 1922-1941
M.S. Horstwood, J. Košler, G. Gehrels, S.E. Jackson, N.M. McLean, C. Paton, B. Schoene. Community‐derived standards for LA‐ICP‐MS U‐(Th‐) Pb geochronology–Uncertainty propagation, age interpretation and data reporting. Geostand. Geoanalyt. Res., 40 (3) (2016), pp. 311-332
T.N. Irvine, W.R.A.F. Baragar. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8 (5) (1971), pp. 523-548
S.E. Jackson, N.J. Pearson, W.L. Griffin, E.A. Belousova. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol., 211 (1–2) (2004), pp. 47-69
O. Jagoutz, P. Bouilhol, U. Schaltegger, O. Müntener. The isotopic evolution of the Kohistan Ladakh arc from subduction initiation to continent arc collision. Geol. Soc. London Special Pub., 483 (1) (2019), pp. 165-182
O.E. Jagoutz, J.P. Burg, S. Hussain, H. Dawood, T. Pettke, T. Iizuka, S. Maruyama. Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contrib. Mineral. Petrol., 158 (2009), pp. 739-755
S.D. Khan, D.J. Walker, S.A. Hall, K.C. Burke, M.T. Shah, L. Stockli. Did the Kohistan-Ladakh island arc collide first with India?. Geol. Soc. Am. Bull., 121 (3–4) (2009), pp. 366-384
M.A. Krol, P.K. Zeitler, G. Poupeau, A. Pecher. Temporal variations in the cooling and denudation history of the Hunza plutonic complex, Karakoram Batholith, revealed by 40Ar/39Ar thermochronology. Tectonics, 15 (2) (1996), pp. 403-415
A.M. Kudo, D.F. Weill. An igneous plagioclase thermometer. Contrib. Mineral. Petrol., 25 (1) (1970), pp. 52-65
M.A. Kusiak, D.J. Dunkley, R. Wirth, M.J. Whitehouse, S.A. Wilde, K. Marquardt. Metallic lead nanospheres discovered in ancient zircons. Proc. Nation. Aca. Sci., 112 (16) (2015), pp. 4958-4963
J.K. Lee, I.S. Williams, D.J. Ellis. Pb, U and Th diffusion in natural zircon. Nature, 390 (6656) (1997), pp. 159-162
W.F. McDonough, S.S. Sun. The composition of the Earth. Chem. Geol., 120 (3–4) (1995), pp. 223-253
E.A. Middlemost. Naming materials in the magma/igneous rock system. Earth Sci. Rev., 37 (3–4) (1994), pp. 215-224
H. Nachit, A. Ibhi, M.B. Ohoud. Discrimination between primary magmatic biotites, re-equilibrated biotites and neo-formed biotites. Comptes Rendus Géoscience, 337 (16) (2005), pp. 1415-1420
A. Noda. A new tool for calculation and visualization of U–Pb age data: UPbplot. py. Bull. Geol. Survey Japan, 68 (3) (2017), pp. 131-140
M. Ogasawara, T. Khan, F. Khan, N. Kito, Y. Morishita. Ion microprobe U-Pb ages of the Khunjerab granodiorite and some granitoids from Karakoram. Pakistan. Himalayan J. Sci., 2 (4) (2008), p. 212
M. Ogasawara, Y. Watanabe, F. Khan, T. Khan, M.S.Z. Khan, S.A. Khan. Late Cretaceous igneous activity and tectonism of the Karakoram block in the Khunjerab Valley, Northern Pakistan. In geology in South Asia-i. Proceedings of the First South Asia Geological Congress (1992)
C. Paton, J. Hellstrom, B. Paul, J. Woodhead, J. Hergt. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Analyt. Atomic Spectrom., 26 (12) (2011), pp. 2508-2518
J.A. Pearce, N.B. Harris, A.G. Tindle. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25 (4) (1984), pp. 956-983
J.A. Petrus, B.S. Kamber. VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostand. Geoanalyt. Res., 36 (3) (2012), pp. 247-270
M.G. Petterson. A review of the geology and tectonics of the Kohistan Island arc, north Pakistan. Geol. Soc. London Special Pub., 338 (1) (2010), pp. 287-327
M.G. Petterson, B.F. Windley. Rb-Sr dating of the Kohistan arc-batholith in the Trans-Himalaya of north Pakistan, and tectonic implications. Earth Planet. Sci. Lett., 74 (1) (1985), pp. 45-57
M.G. Petterson, B.F. Windley. Changing source regions of magmas and crustal growth in the Trans-Himalayas: evidence from the Chalt volcanics and Kohistan batholith, Kohistan, northern Pakistan. Earth Planet. Sci. Lett., 102 (3–4) (1991), pp. 326-341
H. Reichardt, R.F. Weinberg, U.B. Andersson, C.M. Fanning. Hybridization of granitic magmas in the source: the origin of the Karakoram Batholith, Ladakh, NW India. Lithos, 116 (3–4) (2010), pp. 249-272
F. Ridolfi. Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals, 11 (2021), p. 324
W.M. Saktura, S. Buckman, A.P. Nutman, V.C. Bennett. Late Jurassic Changmar complex from the Shyok ophiolite, NW Himalaya: A prelude to the Ladakh arc. Geol. Mag., 158 (2) (2021), pp. 239-260
U. Schaltegger, G. Zeilinger, M. Frank, J.P. Burg. Multiple mantle sources during island arc magmatism: U–Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova, 14 (6) (2002), pp. 461-468
U. Schärer, J. Hamet, C.J. Allègre. The Trans-Himalaya (Gangdese) plutonism in the Ladakh region: a U-Pb and Rb-Sr study. Earth Planet. Sci. Lett., 67 (3) (1984), pp. 327-339
M.P. Searle, M.A. Khan, J.E. Fraser, S.J. Gough, M.Q. Jan. The tectonic evolution of the Kohistan‐Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics, 18 (6) (1999), pp. 929-949
B.M. Sheffels. Lower bound on the amount of crustal shortening, in the central Bolivian Andes. Geology, 18 (9) (1990), pp. 812-815
J.G. Shellnutt. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus. Plos One, 13 (3) (2018), p. e0194155
J. Sláma, J. Košler, D.J. Condon, J.L. Crowley, A. Gerdes, J.M. Hanchar, M.J. Whitehouse. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol., 249 (1–2) (2008), pp. 1-35
D.J. Smith. Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Commun., 5 (1) (2014), p. 4329
S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London Special Pub., 42 (1) (1989), pp. 313-345
Y. Tatsumi. The subduction factory: How it operates in the evolving Earth. GSA Today, 15 (7) (2005), p. 4
G. Tischendorf, B. Gottesmann, H.J. Förster, R.B. Trumbull. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral. Mag., 61 (409) (1997), pp. 809-834
F. Tramm, R. Wirth, B. Budzyń, J. Sláma, A. Schreiber. LA-ICP-MS and TEM constraints on the magmatic and post-magmatic processes recorded by the zircon-xenotime intergrowth in pegmatite (Piława Górna, Góry Sowie Block, SW Poland). Lithos, 404 (2021), Article 106480
P.J. Treloar, D.C. Rex, P.G. Guise, M.P. Coward, M.P. Searle, B.F. Windley, I.W. Luff. K‐Ar and Ar‐Ar geochronology of the Himalayan collision in NW Pakistan: Constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics, 8 (4) (1989), pp. 881-909
A. Tunheng, T. Hirata. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. J. Anal. Atomic Spectrom., 19 (7) (2004), pp. 932-934
P. Ulmer. Partial melting in the mantle wedge—the role of H2O in the genesis of mantle-derived ‘arc-related’magmas. Phys. Earth Planet. Inter., 127 (1–4) (2001), pp. 215-232
P. Vermeesch. IsoplotR: A free and open toolbox for geochronology. Geosci. Front., 9 (5) (2018), pp. 1479-1493
I.M. Villa, J.M. Hanchar. Age discordance and mineralogy. Am. Mineral., 102 (12) (2017), pp. 2422-2439
I. Villa, A. Zanchi, M. Gaetani. Rb-Sr dating of the Tirich Mir pluton, NW Pakistan: pre-140 Ma accretion of the Karakoram terrane to the Asian margin. J. Asian Earth Sci., 19 (3A) (2001), p. 72
P. Vonlanthen, J.D.F. Gerald, D. Rubatto, J. Hermann. Recrystallization rims in zircon (Valle d’Arbedo, Switzerland): An integrated cathodoluminescence, LA-ICP-MS, SHRIMP, and TEM study. Am. Mineral., 97 (2–3) (2012), pp. 369-377
J.B. Whalen, K.L. Currie, B.W. Chappell. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95 (1987), pp. 407-419
M.A.P.C. Wiedenbeck, P. Alle, F.Y. Corfu, W.L. Griffin, M. Meier, F.V. Oberli, W. Spiegel. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newslett., 19 (1) (1995), pp. 1-23
P.J. Wigger, M. Schmitz, M. Araneda, G. Asch, S. Baldzuhn, P. Giese, J. Viramonte. . Variation in the Crustal Structure of the Southern Central Andes Deduced from Seismic Refraction Investigations, Springer, Berlin (1994), pp. 23-48
R. Wirth. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol., 261 (3–4) (2009), pp. 217-229
M.B. Wolf, D. London. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim. Cosmoch. Acta, 58 (19) (1994), pp. 4127-4145
D.R. Wones. Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks. Am. Mineral., 74 (7–8) (1989), pp. 744-749
H. Wu, C. Xie, C. Li, M. Wang, J. Fan, W. Xu. Tectonic shortening and crustal thickening in subduction zones: Evidence from Middle–Late Jurassic magmatism in Southern Qiangtang, China. Gondwana Res., 39 (2016), pp. 1-13
D.C. Zhu, X.X. Mo, Y. Niu, Z.D. Zhao, L.Q. Wang, Y.S. Liu, F.Y. Wu. Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chem. Geol., 268 (3–4) (2009), pp. 298-312
D.C. Zhu, Z.D. Zhao, Y. Niu, X.X. Mo, S.L. Chung, Z.Q. Hou, F.Y. Wu. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett., 301 (1–2) (2011), pp. 241-255

27

Accesses

0

Citations

Detail

Sections
Recommended

/